Refine Your Search

Topic

Author

Search Results

Video

Cooling Airflow System Modeling in CFD Using Assumption of Stationary Flow

2011-11-29
Battery Electric Vehicles and Extended Range Electric Vehicles, like the Chevrolet Volt, can use electrical energy from the Grid to meet the majority of a driver�s transportation needs. This has the positive societal effects of displace petroleum consumption and associated pollutants from combustion on a well to wheels basis, as well as reduced energy costs for the driver. CO2 may also be lower, but this depends upon the nature of the grid energy generation. There is a mix of sources � coal-fired, gas -fired, nuclear or renewables, like hydro, solar, wind or biomass for grid electrical energy. This mix changes by region, and also on the weather and time of day. By monitoring the grid mix and communicating it to drivers (or to their vehicles) in real-time, electrically driven vehicles may be recharged to take advantage of the lowest CO2, and potentially lower cost charging opportunities.
Technical Paper

Effect of Renewable Fuel Blends on PN and SPN Emissions in a GDI Engine

2020-09-15
2020-01-2199
To characterize the effects of renewable fuels on particulate emissions from GDI engines, engine experiments were conducted using EN228-compliant gasoline fuel blends containing no oxygenates, 10% ethanol (EtOH), or 22% ethyl tert-butyl ether (ETBE). The experiments were conducted in a single cylinder GDI engine using a 6-hole fuel injector operated at 200 bar injection pressure. Both PN in raw exhaust and solid PN (SPN) were measured at two load points and various start of injection (SOI) timings. Raw PN and SPN results were classified into various size ranges, corresponding to current and future legislations. At early SOI timings, where particulate formation is dominated by diffusion flames on the piston due to liquid film, the oxygenated blends yielded dramatically higher PN and SPN emissions than reference gasoline because of fuel effects.
Journal Article

Time and Spatially Resolved Temperature Measurements of a Combusting Diesel Spray Impinging on a Wall

2008-06-23
2008-01-1608
The interaction between a combusting diesel spray and a wall was studied by measuring the spray flame temperature time and spatially resolved. The influence of injection sequences, injection pressure and gas conditions on the heat transfer between the combusting spray and the wall was investigated by measuring the flame temperature during the complete injection event. The flame temperature was measured by an emission based optical method and determined by comparing the relative emission intensities from the soot in the flame at two wavelength intervals. The measurements were done by employing a monochromatic and non intensified high speed camera, an array of mirrors, interference filters and a beam splitter. The studies were carried out in the Chalmers High Pressure High Temperature (HP/HT) spray rig at conditions similar to those prevailing in a direct injected diesel engine prior to the injection of fuel.
Technical Paper

Performance of a Heavy Duty DME Diesel Engine - an Experimental Study

2007-10-30
2007-01-4167
Combustion characteristics of dimethyl ether, DME, have been investigated experimentally, in a heavy duty single cylinder engine equipped with an adapted common rail fuel injection system, and the effects of varying injection timing, rail pressure and exhaust gas recirculation on the combustion and emission parameters. The results show that DME combustion does not produce soot and with the use of exhaust gas recirculation NOX emissions can also be reduced to very low levels. However, high injection pressure and/or a DME adopted combustion system is required to improve the mixing process and thus reduce the combustion duration and carbon monoxide emissions.
Technical Paper

Combustion of Fischer-Tropsch, RME and Conventional Fuels in a Heavy-Duty Diesel Engine

2007-10-29
2007-01-4009
This investigation includes a comparison of two Fischer Tropsch (FT) fuels derived from natural gas and a Rapeseed Methyl Ester (RME) fuel with Swedish low sulfur Diesel in terms of emissions levels, fuel consumption and combustion parameters. The engine used in the study was an AVL single cylinder heavy-duty engine, equipped with a cylinder head of a Volvo D12 engine. Two loads (25% and 100%) were investigated at a constant engine speed of 1200 rpm. The engine was calibrated to operate in different levels of EGR and with variable injections timings. A design of experiments was constructed to investigate the effects of these variables, and to identify optimal settings. The results showed that the soot emissions yielded by FT and RME fuels are up to 40 and 80 percent lower than those yielded by the Swedish Diesel. In addition the FT fuel gave slightly lower, and the RME significant higher NOx emissions than the Swedish Diesel.
Technical Paper

An Experimental Investigation of Fischer-Tropsch Fuels in a Light-Duty Diesel Engine

2007-01-23
2007-01-0030
Experiments were performed using a Light-Duty, single-cylinder, research engine in which the emissions, fuel consumption and combustion characteristics of two Fischer-Tropsch (F-T) Diesel fuels derived from natural gas and two conventional Diesel fuels (Swedish low sulfur Diesel and European EN 590 Diesel) were compared. Due to their low aromatic contents combustion with the F-T Diesel fuels resulted in lower soot emissions than combustion with the conventional Diesel fuels. The hydrocarbon emissions were also significantly lower with F-T fuel combustion. Moreover the F-T fuels tended to yield lower CO emissions than the conventional Diesel fuels. The low emissions from the F-T Diesel fuels, and the potential for producing such fuels from biomass, are powerful reason for future interest and research in this field.
Technical Paper

Numerical and Experimental Analysis of the Wall Film Thickness for Diesel Fuel Sprays Impinging on a Temperature-Controlled Wall

2007-04-16
2007-01-0486
Analysis of spray-wall interaction is a major issue in the study of the combustion process in DI diesel engines. Along with spray characteristics, the investigation of impinging sprays and of liquid wall film development is fundamental for predicting the mixture formation. Simulations of these phenomena for diesel sprays need to be validated and improved; nevertheless they can extend and complement experimental measurements. In this paper the wall film thickness for impinging sprays was investigated by evaluating the heat transfer across a temperature controlled wall. In fact, heat transfer is significantly affected by the wall film thickness, and both experiments and simulations were carried out to correlate the wall temperature variations and film height. The numerical simulations were carried out using the STAR-CD and the KIVA-3V, rel. 2, codes.
Technical Paper

Optical Studies of Spray Development and Combustion Characterization of Oxygenated and Fischer-Tropsch Fuels

2008-04-14
2008-01-1393
Optical studies of combusting diesel sprays were done on three different alternative liquid fuels and compared to Swedish environmental class 1 diesel fuel (MK1). The alternative fuels were Rapeseed Oil Methyl Ester (RME), Palm Oil Methyl Ester (PME) and Fischer-Tropsch (FT) fuel. The studies were carried out in the Chalmers High Pressure High Temperature spray rig under conditions similar to those prevailing in a direct-injected diesel engine prior to injection. High speed shadowgraphs were acquired to measure the penetration of the continuous liquid phase, droplets and ligaments, and vapor penetration. Flame temperatures and relative soot concentrations were measured by emission based, line-of-sight, optical methods. A comparison between previous engine tests and spray rig experiments was conducted in order to provide a deeper explanation of the combustion phenomena in the engine tests.
Technical Paper

Performance of a Heavy Duty DME Engine - The Influence of Methanol and Water in the Fuel

2008-04-14
2008-01-1391
In the study reported here the combustion and emission characteristics of a heavy duty six-cylinder diesel engine fuelled with dimethyl ether (DME) of chemical grade and DME with small and varying amounts of methanol and/or water were experimentally investigated. In addition, the size distribution of emitted particles and selected unregulated emissions were sampled. Methanol and water additions had a very limited effect on emissions, but affected the combustion processes in a way that accentuated the premixed combustion and thus caused more energy to be released early in the cycle. At high load, however, the effect was reversed, due to the lack of distinct premixed combustion. The results confirm that DME combustion does not generate any accumulation mode particles. The particles that are detected are smaller than the soot size range and do not occur in greater numbers than those from a diesel engine in the corresponding size range.
Technical Paper

Development of a Model Scale Heat Exchanger for Wind Tunnel Models of Road Vehicles

2008-04-14
2008-01-0097
During the development of the aerodynamic properties of fore coming road vehicles down scaled models are often used in the initial phase. However, if scale models are to be utilised even further in the aerodynamic development they have to include geometrical representatives of most of the components found in the real vehicle. As the cooling package is one of the biggest single generators of aerodynamic drag the heat exchangers are essential to include in a wind tunnel model. However, due mainly to limitations in manufacturing techniques it is complicated to make a down scaled heat exchanger and instead functional dummy heat exchangers have to be developed for scaled wind tunnel models. In this work a Computational Fluid Dynamics (CFD) code has been used to show that it is important that the simplified heat exchanger model has to be of comparable size to that of the full scale unit.
Technical Paper

Neat Dimethyl Ether: Is It Really Diesel Fuel of Promise?

1998-10-19
982537
The CFD model, based on the LANL KIVA-3 computer code, modified to account for the multi-step dimethyl ether, DME/air, oxidation chemistry, was developed and used to study the neat DME combustion dynamics in a constant volume at Diesel-like conditions and in the Volvo AH10A245DI Diesel engine. Constant volume simulations confirm high ignition quality of neat DME in air. The results of engine modeling illustrate that the injection schedule used for Diesel fuel is not optimal for DME. Surprisingly, the positive gain and peak pressure levels comparable with those for Diesel fuel were obtained using an early (∼ -20 ATDC) injection through a nozzle of a larger diameter at reduced injection pressures and velocities (∼150m/s) preventing too rapid spray atomization. At these conditions, combustion heat release has a specific two-stage character with a peak value placed behind the TDC.
Technical Paper

Considerations on Engine Design and Fuelling Technique Effects on Qualitative Combustion in Alcohol Diesel Engines

1998-10-19
982530
This paper depicts the main topics of the experimental investigation on alcohol engine development field, aiming at the engineering targets for the emission levels. The first part of this study was focused on engine design optimization for running on ethanol mixed with poly-ethylene glycol (PEG) as ignition improver. It was shown that some design changes in compression ratio, turbine casing, injector nozzle configuration and exhaust pressure governor (EPG) activation, lead to a better engine thermodynamics and its thermochemistry. The second objective of this study was the investigation of engine performance and emission levels, when the ignition improver diethyl ether (DEE) would be generated on board via catalytically dehydration of ethanol, and used directly as soluble mixture or separately fumigated.
Technical Paper

Performance of a Heavy Duty DME Engine - the Influence of Nozzle Parameters on Combustion and Spray Development

2009-04-20
2009-01-0841
DME was tested in a heavy duty diesel engine and in an optically accessible high-temperature and pressure spray chamber in order to investigate and understand the effect of nozzle parameters on emissions, combustion and fuel spray concentration. The engine study clearly showed that smaller nozzle orifices were advantageous from combustion, efficiency and emissions considerations. Heat release analysis and fuel concentration images indicate that smaller orifices result in higher mixing rate between fuel and air due to reductions in the turbulence length scale, which reduce both the magnitude of fuel-rich regions and the steepness of fuel gradients in the spray, which enable more fuel to burn and thereby shorten the combustion duration.
Technical Paper

An Experimental Investigation of Spray-Wall Interaction of Diesel Sprays

2009-04-20
2009-01-0842
Wall wetting can occur irrespective of combustion concept in diesel engines, e.g. during the compression stroke. This action has been related to engine-out emissions in different ways, and an experimental investigation of impinging diesel sprays is thus made for a standard diesel fuel and a two-component model fuel (IDEA). The experiment was performed at conditions corresponding to those found during the compression stroke in a heavy duty diesel engine. The spray characteristics of two fuels were measured using two different optical methods: a Phase Doppler Particle Analyzer (PDPA) and high-speed imaging. A temperature controlled wall equipped with rapid, coaxial thermocouples was used to record the change in surface temperature from the heat transfer of the impinging sprays.
Technical Paper

A Novel Concept for Combined Hydrogen Production and Power Generation

2009-06-15
2009-01-1946
A novel concept of combined hydrogen production and power generation system based on the combustion of aluminum in water is explored. The energy conversion system proposed is potentially able to provide four different energy sources, such us pressurized hydrogen, high temperature steam, heat, and work at the crankshaft on demand, as well as to fully comply with the environment sustainability requirements. Once aluminum oxide layer is removed, the pure aluminum can react with water producing alumina and hydrogen while releasing a significant amount of energy. Thus, the hydrogen can be stored for further use and the steam can be employed for energy generation or work production in a supplementary power system. The process is proved to be self-sustained and to provide a remarkable amount of energy available as work or hydrogen.
Technical Paper

Effects of Varying Engine Settings on Combustion Parameters, Emissions, Soot and Temperature Distributions in Low Temperature Combustion of Fischer-Tropsch and Swedish Diesel Fuels

2009-11-02
2009-01-2787
It has been previously shown that engine-out soot emissions can be reduced by using Fischer-Tropsch (FT) fuels, due to their lack of aromatics, compared to conventional Diesel fuels. In this investigation the engine-out emissions and fuel consumption parameters of an FT fuel derived from natural gas were compared to those of Swedish low sulfur diesel (MK1) when used in Low Temperature Combustion mode in a single cylinder heavy-duty diesel engine. The effects of varying Needle Opening Pressure (NOP), Charge Air Pressure (CAP) and Exhaust Gas Recirculation (EGR) according to an experimental design on the measured variables were also assessed. CAP and EGR were found to be the most significant factors for the combustion and emission parameters of both fuels. Increases in CAP resulted in lower soot emissions due to enhanced charge mixing, however NOx emissions rose as CAP increased.
Technical Paper

Influence of Ethanol Content in Gasoline on Speciated Emissions from a Direct Injection Stratified Charge SI Engine

2001-03-05
2001-01-1206
The influence of ethanol content in gasoline on speciated emissions from a direct injection stratified charge (DISC) SI engine is assessed. The engine tested is a commercial DISC one that has a wall guided combustion system. The emissions were analyzed using both Fourier transform infrared (FTIR) spectroscopy and conventional emission measurement equipment. Seven fuels were compared in the study. The first range of fuels was of alkylate type, designed to have 0, 5, 10 and 15 % ethanol in gasoline without changing the evaporation curve. European emissions certification fuel was tested, with and without 5 % ethanol, and finally a specially blended high volatility gasoline was also tested. The measurements were conducted at part-load, where the combustion is in stratified mode. The engine used a series engine control unit (ECU) that regulated the fuel injection, ignition and exhaust gas recirculation (EGR).
Technical Paper

Gasoline HCCI Modeling: An Engine Cycle Simulation Code with a Multi-Zone Combustion Model

2002-05-06
2002-01-1745
For the application to Gasoline Homogenous Charge Compression Ignition (HCCI) modeling, a multi-zone model was developed. For this purpose, the detailed-chemistry code SENKIN from the CHEMKIN library was modified. In a previous paper, the authors explained how piston motion and a heat transfer model were implemented in the SENKIN code to make it applicable to engine modeling. The single-zone model developed was successfully implemented in the engine cycle simulation code AVL BOOST™. A multi-zone model, including a crevice volume, a quench layer and multiple core zones, is introduced here. A temperature distribution specified over these zones gives this model a wider range of application than the single-zone model, since fuel efficiency, emissions and heat release can now be predicted more accurately. The SENKIN-BOOST multi-zone model predictions are compared with experimental data.
Technical Paper

The Effect of Knock on Heat Transfer in SI Engines

2002-03-04
2002-01-0238
Heat transfer to the walls of the combustion chamber is increased by engine knock. In this study the influence of knock onset and knock intensity on the heat flux is investigated by examining over 10 000 individual engine cycles with a varying degree of knock. The heat transfer to the walls was estimated by measuring the combustion chamber wall temperature in an SI engine under knocking conditions. The influence of the air-fuel ratio and the orientation of the oscillating cylinder pressure-relative to the combustion chamber wall-were also investigated. It was found that knock intensities above 0.2 Mpa influenced the heat flux. At knock intensities above 0.6 Mpa, the peak heat flux was 2.5 times higher than for a non-knocking cycle. The direction of the oscillations did not affect the heat transfer.
Technical Paper

A New Paraffinic Fuel Impact on Emissions and Combustion Characteristics of a Diesel Engine

2002-07-09
2002-01-2218
Having low aromatic compounds, high cetane rating, higher heat of combustion and almost zero sulphur content, a new paraffinic fuel (NPF), developed by Oroboros AB Sweden, was believed to receive attention as a new alternative fuel. Therefore, further investigation and combustion analyses were conducted in a research single-cylinder diesel engine, where detailed thermodynamic analyses were performed by Burst to File high frequency signal sampling code and by the Dragon software, revealing the real thermochemistry history. The aim of this investigation was an effort to reduce the pollution levels in Santiago de Chile by introducing this new paraffinic fuel (NPF). Experimental results have shown that the NPF fuel has a significant impact not only on the emission levels, but also on other energetic parameters of the engine such as ignition delay, cylinder peak pressure, heat release gradient, indicated efficiency etc.
X