Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

CFD Study of Ventilation and Carbon Dioxide Transport for ISS Node 2 and Attached Modules

2009-07-12
2009-01-2549
The objective of this study is to evaluate ventilation efficiency regarding to the International Space Station (ISS) cabin ventilation during the ISS assembly mission 1J. The focus is on carbon dioxide spatial/temporal variations within the Node 2 and attached modules. An integrated model for CO2 transport analysis that combines 3D CFD modeling with the lumped parameter approach has been implemented. CO2 scrubbing from the air by means of two ISS removal systems is taken into account. It has been established that the ventilation scheme with an ISS Node 2 bypass duct reduces short-circuiting effects and provides less CO2 gradients when the Space Shuttle Orbiter is docked to the ISS. This configuration results in reduced CO2 level within the ISS cabin.
Journal Article

Role of Power Distribution System Tests in Final Assembly of a Military Derivative Airplane

2009-11-10
2009-01-3121
Boeing has contracts for military application of twin engine airplanes generically identified in this paper as the MX airplane. Unlike previous derivatives, the MX airplanes are produced with a streamlined manufacturing process to improve cost and schedule performance. The final assembly of each MX airplane includes a series of integration tests, called factory functional tests (FFTs), which are modified from those of typical commercial versions and verify correctness of equipment installation and basic functionalities. Two airplanes have been through the production line resulting in a number of FFT lessons learned. Addressed are the power distribution lessons learned: 1) the expanded coverage of the basic automated power-on generation system test, 2) the need for a manual wire continuity test, 3) salient features of the power distribution tests, and 4) keys to make first pass power distribution test smooth and successful.
Journal Article

Improving AFP Cell Performance

2014-09-16
2014-01-2272
The Automated Fiber Placement (AFP) machine layup run time in large scale AFP layup cells consumes approximately 30% of the entire part build time. Consequentially, further reductions to the run time of the AFP machine part programs result in small improvements to the overall cycle time. This document discusses how Electroimpact's integrated system and cell design reduces the overall cycle time by reducing the time spent on non-machine processes.
Journal Article

Self-Configuring Hybrid Duct System and Attachment Technologies for Environmental Control Systems

2009-11-10
2009-01-3277
Environmental Control Systems (ECS) ducts on airplanes are primarily fabricated from aluminum or thermoset composites, depending on temperature and pressure requirements. It is imperative to fabricate lightweight, cost effective, durable, and repairable systems with minimal tooling. It is also important that the duct systems are easy to assemble even with alignment issues resulting from structural variations, tolerance accumulation, variation from thermal expansion of different materials, and inherent duct stiffness. These requirements create an opportunity and need for a technology that can address all of these issues, while increasing performance at the same time. This report provides a background on current ECS ducting systems.
Technical Paper

Process Development for Use of AERAC

1991-11-01
912650
Two Automated Electromagnetic Riveting Assembly Cells (AERAC) were manufactured for Textron Aerostructures by Electroimpact, Inc. The AERAC installs the final rivets in the A330/A340 upper wing panel in the floor assembly jig. At Textron for each wing the corresponding floor assembly jigs for each wing are lined up end to end. An operating procedure in which the formboards are removed in bays allows efficient operation of an in the jig riveter such as the AERAC. Specialized machine codes developed for the AERAC allows quick fully programmed stringer to stringer jumps of the stringer side offset tooling. The AERAC is programmed entirely from a CATIA drawing of the part. Of the 5 axes of rivet data available only two are retained for use by the AERAC.
Journal Article

Estimating Return on Investment for SAVI (a Model-Based Virtual Integration Process)

2011-10-18
2011-01-2576
The System Architecture Virtual Integration (SAVI) program is a collaboration of industry, government, and academic organizations within the Aerospace Vehicle System Institute (AVSI) with the goal of structuring a new integration process that relies on a “single-truth” architectural framework. The SAVI approach of “Integrate, then Build” provides a modern distributed development environment which arrests the propagation of requirements errors through the development life cycle. It does so by capturing design assumptions and shared properties of the system design in an authoritative, annotated architectural model. This reference model provides a common, analyzable framework for confirming that system requirements remain complete, consistent, and correct at all levels of system decomposition. Core concepts of SAVI include extensive use of model-based system engineering tools and use of a “single-truth” reference architectural model.
Technical Paper

International Space Station (ISS) Carbon Dioxide Removal Assembly (CDRA) Desiccant/Adsorbent Bed (DAB) Orbital Replacement Unit (ORU) Redesign

2007-07-09
2007-01-3181
The Carbon Dioxide Removal Assembly (CDRA) is a part of the International Space Station (ISS) Environmental Control and Life Support (ECLS) system. The CDRA provides carbon dioxide (CO2) removal from the ISS on-orbit modules. Currently, the CDRA is the secondary removal system on the ISS, with the primary system being the Russian Vozdukh. Within the CDRA are two Desiccant/Adsorbent Beds (DAB), which perform the carbon dioxide removal function. The DAB adsorbent containment approach required improvements with respect to adsorbent containment. These improvements were implemented through a redesign program and have been implemented on units on the ground and returning from orbit. This paper presents a DAB design modification implementation description, a hardware performance comparison between the unmodified and modified DAB configurations, and a description of the modified DAB hardware implementation into the on-orbit CDRA.
Technical Paper

Analysis and Predicted Temperature Control of Crew Quarters added to Node 2 of the International Space Station

2007-07-09
2007-01-3071
Currently scheduled to be delivered to the International Space Station (ISS) in 2009, Crew Quarters (CQs) will be installed in the Node 2 Module. The CQs provide crewmembers with private space, a place to sleep, and minimal storage. Analysis is to be performed to determine if the United States Operational Segment (USOS) Node 2 can maintain temperature between 47°C and 62°C (65°F and 80°F) [units are CCGS with U.S unit in parenthesis] within the CQ. The analysis will concentrate on the nominal hot environmental case. Environmental heat is due to solar heating of the external shell of the ISS. Configurations including both three and four CQs are examined, as well as multiple configurations of the Low Temperature Loop (LTL) that flows through the Node 2 Common Cabin Air Assembly (CCAA). This paper describes the analysis performed to determine if Node 2 will be able to maintain cabin temperature between 47°C and 62°C (65°F and 85°F).
Technical Paper

Liquid Water Content and Droplet Size Distribution Mass Fractions for Wind Milling Engine Fan Blade Ice Accretion Analysis

2007-09-24
2007-01-3291
A procedure for calculating the engine inlet diffuser section liquid water content and mass fractions of liquid water content associated with the water droplet size distribution for wind milling engine ice accretion analysis is presented. Critical fuel reserve calculation for extended twin-engine operation requires the determination of drag increase due to ice accretion on inoperative wind milling engine fan blade and guide vane.
Technical Paper

Assembly Fixture for 787 Section 11, Heavy Composite Assembly

2007-09-17
2007-01-3869
The 787 Section 11 Assembly Cell is a combination fixed post and moving frame holding and indexing system, designed to determinately build the 787 Section 11 Wing box. The retractable overhead frame allows maximum clearance for safer and faster loading and unloading of component parts, as well as completed wingbody sections. Additionally, each index is also retractable allowing maximum fastener access inside the jig.
Technical Paper

Automated Riveting Cell for A320 Wing Panels with Improved Throughput and Reliability (SA2)

2007-09-17
2007-01-3915
A new Low-Voltage Electromagnetic Riveting (LVER) machine has entered service at the Airbus UK wing factory in Broughton, Wales, in an assembly workcell for A320 family wing panels. The machine is based on existing Electroimpact technology but incorporates numerous design modifications to process tools, fastener feed hardware, machine structure and the control system. In the first months of production these modifications have demonstrated clear improvements in fastener installation cycle times and machine reliability.
Technical Paper

Universal Splice Machine

2007-09-17
2007-01-3782
There is an increasing demand in the aerospace industry for automated machinery that is portable, flexible and light. This paper will focus on a joint project between BROETJE-Automation and Boeing called the Universal Splice Machine (USM). The USM is a portable, flexible and lightweight automated drilling and fastening machine for longitudinal splices. The USM is the first machine of its kind that has the ability not only to drill holes without the need to deburr, (burrless drilling) but also to insert fasteners. The Multi Function End Effector (MFEE) runs on a rail system that is mounted directly on the fuselage using a vacuum cup system. Clamp up is achieved through the use of an advanced electromagnet. A control cart follows along next to the fuselage and includes an Automated Fastener Feeding System. This paper will show how this new advancement has the capabilities to fill gaps in aircraft production that automation has never reached before.
Technical Paper

Development of Portable and Flexible Track Positioning System for Aircraft Manufacturing Processes

2007-09-17
2007-01-3781
The Boeing Company has recently developed a portable positioning system based upon its patented flexible vacuum track technology, in support of its commitment to lean manufacturing techniques. The positioning system, referred to as Mini Flex Track, was initially developed as an inexpensive drilling system that minimizes machine setup time, does not require extensive operator training due to its simple user interface, is general purpose enough to be used in varying airplane applications, and meets strict accuracy requirements for aircraft manufacturing. The system consists of a variable length vacuum track that conforms to a range of contours, a two-axis numerically-controlled positioning carriage that controls machine motion, an additional rail perpendicular to the vacuum rail that provides transverse motion, and an end effector that can perform various tasks.
Technical Paper

Verification of Supply Chain Quality for Perishable Tools

2007-09-17
2007-01-3813
Increased emphasis on standardizing processes and controlling variability in production operations includes validating perishable tools used in daily operations. Even though dealing with reputable manufacturers, many factors including communication, custom specifications and personnel turnover can lead to the perpetuation of mistakes if errors are not discovered and corrective action implemented. However, inspection is costly and inspection costs far outweigh many item costs unless considering product defects. A beneficial balance may be obtained by employing statistical sampling techniques similar to ISO 2859 [1] to verify the quality of incoming tools.
Technical Paper

Robotic Drilling System for 737 Aileron

2007-09-17
2007-01-3821
Boeing's wholly owned subsidiary in Australia, Hawker de Havilland produces all ailerons for the Boeing 737 family of aircraft. Increasing production rates required to meet market demand drove the requirements for a new updated approach to assembly of these parts. Using lean principals, a pulsed flow line approach was developed. A component of this new line is the integration of a flexible robotic drilling/trimming system. The new robotic system is required to meet aggressive tack time targets with high levels of reliability. The selected system was built on a Kuka KR360-2 conventional articulated arm robot. A significant challenge of this project was the requirement for the process head to work efficiently on an aileron in an existing jig. As a result a new side-mounted drill and trim end effector was developed. Automated tool changers for both cutters and pressure foot assemblies eliminated the requirement for in- process manual intervention.
Technical Paper

High-Speed Fiber Placement on Large Complex Structures

2007-09-17
2007-01-3843
Automated Fiber Placement (AFP) equipment has been developed capable of laying fiber in excess of 2000 inches per minute on full-size, complex parts. Two such high-speed machines will be installed for production of a nose section for a large twin-aisle commercial aircraft fuselage at Spirit AeroSystems in Wichita, Kansas along with a rotator for the fuselage mandrel. The problem of cutting and adding on the fly at these speeds requires thorough re-evaluation of all aspects of the technology, including the mechanical, controls, servos systems, and programming systems. Factors to be considered for high speed cut and add on the fly are discussed.
Technical Paper

3D Re-Engineering: A Comprehensive Process for Solving Production Assembly Fit Problems

1998-06-02
981835
Dimensional Management (DM) is a methodology to predict and control the impact of variation on assembly from, fit, and function. Application of Dimensional Management tools and other modeling and simulation techniques are combined in a process called 3D Re-Engineering for application to existing production designs. Analytical techniques for predicting the impact of variation on assembly fit, and corresponding methods for controlling variation are presented, as used in a production environment for root cause corrective action on existing assembly fit problems. Assembly variation analysis is typically performed early in the product development phases, by coordinating datums, assembly sequences, assembly methods, and detail part tolerances across the product development team.
Technical Paper

Comparison of Alerted and Visually Acquired Airborne Aircraft in a Complex Air Traffic Environment

1998-04-06
981205
This study was designed to answer what percent of “required” traffic pilots acquire visually using the current “visual acquisition system” of windows, eyes and the Traffic Collision Avoidance System (TCAS). “Required Traffic” was defined as Air Traffic Control (ATC) calls to the research aircraft, TCAS Traffic Alerts and/or TCAS Resolution Advisories. The results of the approximately 40 hours of flight were that the majority of (“required”) traffic was NOT visually acquired (39% visually acquired; 61% not visually acquired). When traffic was identified to the pilots by more than one source, the visual acquisition rate was 58%. For validation purposes, an additional 10 hours of flight observations were made during revenue flights with a major airline. Flight test and airline observations were found to be comparable.
Technical Paper

Oxygen/Nitrogen Supply and Distribution for the United States On-Orbit Segment of the International Space Station

1997-07-01
972381
The on-orbit oxygen and nitrogen supply for the United States On-Orbit Segment (USOS) of the International Space Station (ISS) is provided in tanks mounted on the outside of the Airlock module. Gasses are supplied, for distribution to users within the USOS, via pressure regulators in the Airlock. The on-orbit storage can be replenished with gas that is scavenged from the Space Shuttle, or by direct replacement of the tanks. The supply and distribution system are described in this paper. The users of the gasses are identified. The system architecture is presented. Operational considerations are discussed.
Technical Paper

Structural Pressures Developed During Fill of Complex Systems

1998-07-13
981735
Excessive impact pressures can develop when an evacuated system is filled with liquid. Such a process is usually highly chaotic, especially when the system geometry is complex. Available computational methods by themselves cannot provide the necessary answers. The International Space Station (ISS) heat exchanger has a complex flow system, and a synthesis of computational and experimental methods was necessary to design the system. The FLOW-NET two-phase flow program was used to determine the range of loss coefficients and the liquid-vapor interface mass and energy transfer that would fit the measured impact pressures. These loss coefficients could then be used to compute the impact pressures for a design configuration similar to the one tested at a range of operating conditions.
X