Refine Your Search

Topic

Author

Search Results

Video

Real-time Tire Imbalance Detection Using ABS Wheel Speed Sensors

2011-11-15
This presentation proposes an approach to use ABS wheel speed sensor signals together with other vehicle state information from a brake control module to detect an unbalanced tire or tires in real-time. The proposed approach consists of two-stage algorithms that mix a qualitative method using band-pass filtering with a quantitative parameter identification using conditional least squares. This two-stage approach can improve the robustness of tire imbalance or imbalances. The proposed approach is verified through vehicle testing and the test results show the effectiveness of the approach. Presenter Jianbo Lu, Ford Motor Co.
Journal Article

Extending Tensile Curves beyond Uniform Elongation Using Digital Image Correlation: Capability Analysis

2010-04-12
2010-01-0981
A uniaxial stress-strain curve obtained from a conventional tensile test is only valid up to the point of uniform elongation, beyond which a diffuse neck begins to develop, followed by localized necking and eventual fracture. However Finite Element Analysis for sheet metal forming requires an effective stress-strain curve that extends well beyond the diffuse necking point. Such an extension is usually accomplished by analytical curve fitting and extrapolation. Recent advancement in Digital Image Correlation (DIC) techniques allows direct measurement of full-range stress-strain curves by continuously analyzing the deformation within the diffuse neck zone until the material ruptures. However the stress-strain curve obtained this way is still approximate in nature. Its accuracy depends on the specimen size, the gage size for analysis, and the material response itself.
Journal Article

Derivation of Effective Strain-Life Data, Crack Closure Parameters and Effective Crack Growth Data from Smooth Specimen Fatigue Tests

2013-04-08
2013-01-1779
Small crack growth from notches under variable amplitude loading requires that crack opening stress be followed on a cycle by cycle basis and taken into account in making fatigue life predictions. The use of constant amplitude fatigue life data that ignores changes in crack opening stress due to high stress overloads in variable amplitude fatigue leads to non-conservative fatigue life predictions. Similarly fatigue life predictions based on small crack growth calculations for cracks growing from flaws in notches are non-conservative when constant amplitude crack growth data are used. These non-conservative predictions have, in both cases, been shown to be due to severe reductions in fatigue crack closure arising from large (overload or underload) cycles in a typical service load history.
Journal Article

Finite Element Modeling of Dissimilar Metal Self-piercing Riveting Process

2014-04-01
2014-01-1982
In present paper, the process of joining aluminum alloy 6111T4 and steel HSLA340 sheets by self-piercing riveting (SPR) is studied. The rivet material properties were obtained by inverse modeling approach. Element erosion technique was adopted in the LS-DYNA/explicit analysis for the separation of upper sheet before the rivet penetrates into lower sheet. Maximum shear strain criterion was implemented for material failure after comparing several classic fracture criteria. LS-DYNA/implicit was used for springback analysis following the explicit riveting simulation. Large compressive residual stress was observed near frequent fatigue crack initiation sites, both around vicinity of middle inner wall of rivet shank and upper 6111T4 sheet.
Journal Article

Failure Mode and Fatigue Behavior of Dissimilar Laser Welds in Lap-Shear Specimens of Aluminum and Copper Sheets

2014-04-01
2014-01-1986
Failure mode and fatigue behavior of dissimilar laser welds in lap-shear specimens of aluminum and copper sheets are investigated. Quasi-static tests and fatigue tests of laser-welded lap-shear specimens under different load ranges with the load ratio of 0.1 were conducted. Optical micrographs of the welds after the tests were examined to understand the failure modes of the specimens. For the specimens tested under quasi-static loading conditions, the micrograph indicates that the specimen failed through the fusion zone of the aluminum sheet. For the specimens tested under cyclic loading conditions, two types of failure modes were observed under different load ranges. One failure mode has a kinked crack initiating from the interfacial surface between the aluminum and copper sheets and growing into the aluminum fusion zone at an angle close to 90°.
Journal Article

Fatigue Behavior of Stainless Steel Sheet Specimens at Extremely High Temperatures

2014-04-01
2014-01-0975
Active regeneration systems for cleaning diesel exhaust can operate at extremely high temperatures up to 1000°C. The extremely high temperatures create a unique challenge for the design of regeneration structural components near their melting temperatures. In this paper, the preparation of the sheet specimens and the test set-up based on induction heating for sheet specimens are first presented. Tensile test data at room temperature, 500, 700, 900 and 1100°C are then presented. The yield strength and tensile strength were observed to decrease with decreasing strain rate in tests conducted at 900 and 1100°C but no strain rate dependence was observed in the elastic properties for tests conducted below 900°C. The stress-life relations for under cyclic loading at 700 and 1100°C with and without hold time are then investigated. The fatigue test data show that the hold time at the maximum stress strongly affects the stress-life relation at high temperatures.
Journal Article

An Investigation of the Effects of Cast Skin on the Mechanical Properties of an AM60 Die-Cast Magnesium Alloy

2015-04-14
2015-01-0510
Magnesium die-cast alloys are known to have a layered microstructure composed of: (1) An outer skin layer characterized by a refined microstructure that is relatively defect-free; and (2) A “core” (interior) layer with a coarser microstructure having a higher concentration of features such as porosity and externally solidified grains (ESGs). Because of the difference in microstructural features, it has been long suggested that removal of the surface layer by machining could result in reduced mechanical properties in tested tensile samples. To examine the influence of the skin layer on the mechanical properties, a series of round tensile bars of varying diameters were die-cast in a specially-designed mold using the AM60 Mg alloy. A select number of the samples were machined to different final diameters. Subsequently, all of the samples (as-cast as well as machined) were tested in tension.
Journal Article

A Fatigue Life Prediction Method of Laser Assisted Self-Piercing Rivet Joint for Magnesium Alloys

2015-04-14
2015-01-0537
Due to magnesium alloy's poor weldability, other joining techniques such as laser assisted self-piercing rivet (LSPR) are used for joining magnesium alloys. This research investigates the fatigue performance of LSPR for magnesium alloys including AZ31 and AM60. Tensile-shear and coach peel specimens for AZ31 and AM60 were fabricated and tested for understanding joint fatigue performance. A structural stress - life (S-N) method was used to develop the fatigue parameters from load-life test results. In order to validate this approach, test results from multijoint specimens were compared with the predicted fatigue results of these specimens using the structural stress method. The fatigue results predicted using the structural stress method correlate well with the test results.
Journal Article

Real-time Tire Imbalance Detection Using ABS Wheel Speed Sensors

2011-04-12
2011-01-0981
This paper proposes an approach to use ABS wheel speed sensor signals together with other vehicle state information from a brake control module to detect an unbalanced tire or tires in real-time. The proposed approach consists of two-stage algorithms that mix a qualitative method using band-pass filtering with a quantitative parameter identification using conditional least squares. This two-stage approach can improve the robustness of tire imbalance or imbalances. The proposed approach is verified through vehicle testing and the test results show the effectiveness of the approach.
Technical Paper

Biaxial Torsion-Bending Fatigue of SAE Axle Shafts

1991-02-01
910164
Variable amplitude torsion, bending, and combined torsion and bending fatigue tests were performed on an axle shaft. The moment inputs used were taken from the respective history channels of a cable log skidder vehicle axle. Testing results indicated that combined variable amplitude loading lives were shorter than the lives of specimens subjected to bending or torsion alone. Calculations using strain rosette readings indicated that principle strains were most active around specific angles but also occurred with lesser magnitudes through a wider angular range. Over the course of a biaxial test, cyclic creep narrowly limited the angles and magnitudes of the principal strains. This limitation was not observed in the calculated principal stress behavior. Simple life predictions made on the measured strain gage histories were non-conservative in most cases.
Technical Paper

Material Characterization of Powder-Forged Copper Steels

1991-02-01
910155
Powder metal based copper steels have found increased use in automotive applications, an example being powder-forged connecting rods. A characterization study was conducted to determine the effects of carbon content and manganese sulphide addition on the mechanical properties and machinability of these materials. Steel powder mixes containing 2% Cu and various graphite contents, with and without a MnS addition were pressed, sintered and forged to full density. Forged samples were then tested for tensile properties, hardness and fatigue strength. Machinability was determined by measuring tool life during drilling tests. It was found that increasing the carbon content from 0.28 to 0.69% has little effect on fatigue properties of powder-forged copper steels although the tensile, strength increased as expected. The addition of manganese sulphide did not affect the mechanical properties measured, but was found to significantly improve the machinability.
Technical Paper

Dynamic Durability Analysis of Automotive Structures

1998-02-23
980695
Since the environment of vehicle operation is dynamic in nature, dynamic methods should be used in vehicle durability analysis. Due to the constraints in current computer resources, simulation of vehicle durability tests and structural fatigue life assessment need special approaches and efficient CAE tools. The purpose of this paper is to present an efficient methodology and a feasible vehicle dynamic durability analysis process. Two examples of structural durability analysis using transient dynamics are given. The examples show that vehicle stress analysis and fatigue life prediction using dynamic method is now feasible by employing the presented method and process.
Technical Paper

Gas Metal Arc Welding (GMAW) Process Optimization of 1.0 mm Usibor® 1500 P Steel to 1.5 mm Uncoated Dual Phase 780 (DP780) Steel Joint for Automotive Body Structural Applications

2010-04-12
2010-01-0446
With the increasing demand for safety, energy saving and emission reduction, Advanced High Strength Steels (AHSS) have become very attractive steels for automobile makers. The usage of AHSS steels is projected to grow significantly in the next 5-10 years with new safety and fuel economy regulations. These new steels have significant manufacturing challenges, particularly for welding and stamping. Welding of AHSS remains one of the technical challenges in the successful application of AHSS in automobile structures due to heat-affected zones (HAZ) at the weld joint. In this study Gas Metal Arc Welding (GMAW) of a lap joint configuration consisting of 1.0 mm Usibor® 1500 steel to uncoated Dual Phase 780 (DP780) steel was investigated. The objective of the study was to understand the wire feed rate (WFR) and torch (or robot) travel speed (TTS) influence on lap joint tensile strength.
Technical Paper

Monotonic and Fatigue Behavior of Magnesium Extrusion Alloy AM30: An International Benchmark Test in the “Magnesium Front End Research and Development Project”

2010-04-12
2010-01-0407
Magnesium alloys are the lightest structural metal and recently attention has been focused on using them for structural automotive components. Fatigue and durability studies are essential in the design of these load-bearing components. In 2006, a large multinational research effort, Magnesium Front End Research & Development (MFERD), was launched involving researchers from Canada, China and the US. The MFERD project is intended to investigate the applicability of Mg alloys as lightweight materials for automotive body structures. The participating institutions in fatigue and durability studies were the University of Waterloo and Ryerson University from Canada, Institute of Metal Research (IMR) from China, and Mississippi State University, Westmorland, General Motors Corporation, Ford Motor Company and Chrysler Group LLC from the United States.
Technical Paper

Impact of Decarburization on the Fatigue Life of Powder Metal Forged Connecting Rods

2001-03-05
2001-01-0403
A main requirement for a satisfactory function and service life of a forged powder metal connecting rod is the fatigue strength. Fatigue strength mainly depends on design, material, microstructure, and surface condition. Much work has been accomplished to optimize these factors, but still a variety of surface defects such as localized porosity, roughness, oxide penetration, decarburization, etc., can be developed during manufacturing. These surface defects impact the fatigue strength in various ways. The impact of the decarburized layer depth on the fatigue life of a forged powder metal connecting rod is the focus of this work. Several connecting rods were submitted to a Weibull test at the same loading pattern. After the fatigue tests, the connecting rods were divided into groups with different decarburized layer depths. Both Maximum Likelihood Estimates (MLE) and Rank Regression (RR) techniques were used to analyze test results from all the groups obtained.
Technical Paper

Optimum Gap Design And Durability Analysis of Catalytic Converter Assembly

2001-03-05
2001-01-0942
A method to predict gap distribution, can deformation and mounting force of catalytic converter during assembling and operation cycles has been developed using ABAQUS contact algorithm with user subroutine for material properties. Inherent in the methodology is the constitutive model for both vermiculite mat and wire mesh mounting materials, which is able to describe their nonlinear and thermal behaviors and shows good agreement with test results. A design optimization procedure is presented to achieve uniform gap design of can and substrate. The technology will enable engineers to generate robust converter can designs, substrate shape and stamping tools for minimum manufacturing failure rate and maximum durability performance once a mounting material is selected.
Technical Paper

Correlating Stressed Environmental Testing of Structural Composites to Service

2001-03-05
2001-01-0094
A compact in-situ tensile stress fixture was designed for the study of the combined effects of stress and automotive environments on structural glass fiber-reinforced composite materials. With this fixture, a standardized 300 hour laboratory screening test was developed to compare the residual property loss of composite materials due to concurrent exposure to stress and environment. It is of great importance that the data gathered in the laboratory have correlation to on-vehicle (in-service) performance, and that both lab and real world data be taken with a test system (in-situ test fixtures) capable of providing accurate and consistent results under either test condition.
Technical Paper

Steering Wheel Vibration Diagnosis

2001-04-30
2001-01-1607
The objective of this project was to develop a methodology for the diagnosis of vibrations of the vehicle's steering wheel. This paper will describe an attempt at developing a systematic approach for describing the vibrations felt, what the sources might be, and how various steering system parameters might affect the vibrations.
Technical Paper

A Micromachined Silicon Mass-Air-Flow Sensor

1992-02-01
920473
This paper describes the fabrication and operation of a low-cost, monolithic silicon mass-air-flow sensor (MAFS) developed for automotive applications. The device is a hot wire anemometer made of two thin single-crystal silicon beams, one being the heated element and the other serving as a temperature reference. Temperature compensation techniques and the design tradeoffs to maximize performance while ensuring durability in the harsh automotive environment are discussed.
Technical Paper

Analysis of Methods for Determining Sheared Edge Formability

2011-04-12
2011-01-1062
Imposing tensile stress on an edge of a sheet metal blank is a common condition in many sheet metal forming operations, making edge formability a very important factor to consider. Because edge formability varies greatly among different materials, cutting methods (and their control parameters), it is very important to have access to an experimental technique that would allow for quick and reliable evaluation of edge formability for a given case. In this paper, two existing techniques are compared: the hole expansion test and the tensile test. It is shown that the hole expansion test might not be adequate for many cases, and is prone to overestimating the limiting strain, because the burr on the sheared edge is typically smaller than what is observed in production. The tensile test represents an effective alternative to the hole expansion test. Advantages and disadvantages of each case are discussed.
X