Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

Fracture Modeling of AHSS in Component Crush Tests

2011-04-12
2011-01-0001
Advanced High Strength Steels (AHSS) have been implemented in the automotive industry to balance the requirements for vehicle crash safety, emissions, and fuel economy. With lower ductility compared to conventional steels, the fracture behavior of AHSS components has to be considered in vehicle crash simulations to achieve a reliable crashworthiness prediction. Without considering the fracture behavior, component fracture cannot be predicted and subsequently the crash energy absorbed by the fractured component can be over-estimated. In full vehicle simulations, failure to predict component fracture sometimes leads to less predicted intrusion. In this paper, the feasibility of using computer simulations in predicting fracture during crash deformation is studied.
Journal Article

Electrochemical Characterization of Coated Self-Piercing Rivets for Magnesium Applications

2016-01-01
2015-01-9085
This work reports on measurement and analysis of the galvanic interaction between steel self-piercing rivets (SPRs) having several different surface conditions and magnesium alloy substrates under consideration for use in automotive structural assemblies. Rivet surface conditions included uncoated steel, conventional Zn-Sn barrel plating and variations of commercial aluminizing processes, including supplemental layers and sealants. Coating characteristics were assessed using open circuit potential (OCP) measurement, potentiodynamic polarization scanning (PDS), and electrochemical impedance spectroscopy (EIS). The degree of galvanic coupling was determined using zero-resistance ammeter (ZRA) and the scanning vibrating electrode technique (SVET), which also permitted characterization of galvanic current flows in situ.
Journal Article

Multidisciplinary Optimization under Uncertainty Using Bayesian Network

2016-04-05
2016-01-0304
This paper proposes a novel probabilistic approach for multidisciplinary design optimization (MDO) under uncertainty, especially for systems with feedback coupled analyses with multiple coupling variables. The proposed approach consists of four components: multidisciplinary analysis, Bayesian network, copula-based sampling, and design optimization. The Bayesian network represents the joint distribution of multiple variables through marginal distributions and conditional probabilities, and updates the distributions based on new data. In this methodology, the Bayesian network is pursued in two directions: (1) probabilistic surrogate modeling to estimate the output uncertainty given values of the design variables, and (2) probabilistic multidisciplinary analysis (MDA) to infer the distributions of the coupling and output variables that satisfy interdisciplinary compatibility conditions.
Journal Article

Aerodynamic Investigation of Cooling Drag of a Production Pickup Truck Part 1: Test Results

2018-04-03
2018-01-0740
The airflow that enters the front grille of a ground vehicle for the purpose of component cooling has a significant effect on aerodynamic drag. This drag component is commonly referred to as cooling drag, which denotes the difference in drag measured between open grille and closed grille conditions. When the front grille is closed, the airflow that would have entered the front grille is redirected around the body. This airflow is commonly referred to as cooling interference airflow. Consequently, cooling interference airflow can lead to differences in vehicle component drag; this component of cooling drag is known as cooling interference drag. One mechanism that has been commonly utilized to directly influence the cooling drag, by reducing the engine airflow, is active grille shutters (AGS). For certain driving conditions, the AGS system can restrict airflow from passing through the heat exchangers, which significantly reduces cooling drag.
Technical Paper

Composite Hybrid Automotive Suspension System Innovative Structures (CHASSIS)

2020-04-14
2020-01-0777
The Composite Hybrid Automotive Suspension System Innovative Structures (CHASSIS) is a project to develop structural commercial vehicle suspension components in high volume utilising hybrid materials and joining techniques to offer a viable lightweight production alternative to steel. Three components are in scope for the project:- Front Subframe Front Lower Control Arm (FLCA) Rear Deadbeam Axle
Technical Paper

Calibration and Validation of GISSMO Damage Model for A 780-MPa Third Generation Advanced High Strength Steel

2020-04-14
2020-01-0198
To evaluate vehicle crash performance in the early design stages, a reliable fracture model is needed in crash simulations to predict material fracture initiation and propagation. In this paper, a generalized incremental stress state dependent damage model (GISSMO) in LS-DYNA® was calibrated and validated for a 780-MPa third generation advanced high strength steels (AHSS), namely 780 XG3TM steel that combines high strength and ductility. The fracture locus of the 780 XG3TM steel was experimentally characterized under various stress states including uniaxial tension, shear, plane strain and equi-biaxial stretch conditions. A process to calibrate the parameters in the GISSMO model was developed and successfully applied to the 780 XG3TM steel using the fracture test data for these stress states.
Technical Paper

An Analysis of the Effects of Ventilation on Burn Patterns Resulting from Passenger Compartment Interior Fires

2020-04-14
2020-01-0923
Vehicle fire investigators often use the existence of burn patterns, along with the amount and location of fire damage, to determine the fire origin and its cause. The purpose of this paper is to study the effects of ventilation location on the interior burn patterns and burn damage of passenger compartment fires. Four similar Ford Fusion vehicles were burned. The fire origin and first material ignited were the same for all four vehicles. In each test, a different door window was down for the duration of the burn test. Each vehicle was allowed to burn until the windshield, back glass, or another window, other than the window used for ventilation, failed, thus changing the ventilation pattern. At that point, the fire was extinguished. Temperatures were measured at various locations in the passenger compartment. Video recordings and still photography were collected at all phases of the study.
Journal Article

Optimized Engine Accessory Drive Resulting in Vehicle FE Improvement

2008-04-01
2008-01-2761
A belt driven Front End Accessory Drive (FEAD) is used to efficiently supply power to accessory components on automotive engines. The total energy absorbed by the FEAD consists of the accessory component requirements, the belt deformation and friction losses as well as the bearing losses. The accessory component torque requirements provide accessory function such as air conditioning, fluid pumping and electrical power generation. Alternatively, belt related torque losses are a significant parasitic loss, since they do not contribute any useful work. This paper will explain the source of energy loss in FEADs and outline a comprehensive strategy to reduce it. Test results comparing the effect of reduced friction on fuel consumption will be presented as well.
Journal Article

A Component Test Methodology for Simulation of Full-Vehicle Side Impact Dummy Abdomen Responses for Door Trim Evaluation

2011-04-12
2011-01-1097
Described in this paper is a component test methodology to evaluate the door trim armrest performance in an Insurance Institute for Highway Safety (IIHS) side impact test and to predict the SID-IIs abdomen injury metrics (rib deflection, deflection rate and V*C). The test methodology consisted of a sub-assembly of two SID-IIs abdomen ribs with spine box, mounted on a linear bearing and allowed to translate in the direction of impact. The spine box with the assembly of two abdominal ribs was rigidly attached to the sliding test fixture, and is stationary at the start of the test. The door trim armrest was mounted on the impactor, which was prescribed the door velocity profile obtained from full-vehicle test. The location and orientation of the armrest relative to the dummy abdomen ribs was maintained the same as in the full-vehicle test.
Technical Paper

Buzz Avoidance on Sunroof Light Sunshades: Design and Validation

2020-01-13
2019-36-0148
Sunroof is placed in certain high-end vehicles to give user a better driving experience. All automakers are searching alternatives to reduce weight and cost in the vehicle, in which sunroofs are also impacted. Some alternatives are already applied, as a honeycomb paper used in some sunshades that presents benefits, as less weight and with a good cost reduction. Although, due the reduced weight for this part produced in this material, it shows more susceptibility to reproduce the vibration that vehicle propagates in movement, especially in bad condition roads. The sunroof assembly is dependent of the roof reinforcement and roof skin, but in this special case, the validation could be done in the components itself because the interaction of the sunshades is directly dependent of the other sunroof parts, as rails and front frame.
Technical Paper

Implementation, Improvement and Statistical Validation of Scoring by Milling Process on an Instrument Panel with In-Mold Grain Lamination

2020-01-13
2019-36-0155
This paper starts describing the in-mold grain lamination and bilaminated film cover when applied to instrument panels with seamless passenger air bag doors. It then offers a comparison between two different PAB door weakening processes, the laser scoring and the scoring by milling. It further discuss the scoring by milling process and analyses its implementation on a real case instrument panel. In the implementation case, the scoring pattern is checked against a pre-defined engineering specification and correlated to the results of a drop tower test, which shows the force necessary to break the PAB door. Three iterations are performed until the results for scoring pattern and breaking force are achieved. The breaking force results are then statistically validated against the specification and capability analysis.
Technical Paper

Rattle Evaluation: Sunroof Glass Against Roof Flange

2020-01-13
2019-36-0140
Sunroof is installed in the vehicles to generate a better satisfaction for customer. Normally, the glass is maintained closed or fully opened, when the user would like to exterior air to get in. The glass runs in the sunroof rail that interacts directly with the roof skin and the roof reinforcement, where the whole sunroof structure is fixed. In general, sunroofs are equipped with two stages button, were the final or second stage, more used by users, allows the glass to move until the final position directly, without stops. Even though, the first stage could move the glass according user desire. For validation, the vehicle runs in several roads in order to capture any unusual response given by the sunroof. During specific test validation created, the glass was been positioned in the critical region that by design has the minimum distance against the roof flange.
Technical Paper

Robustness Design to Avoid Noise on Exterior Handle System

2020-01-13
2019-36-0137
Squeak and rattle are two undesirable occurrences during component operation and during vehicle driving condition, resulting in one of the top complains from costumers. One common grievance could happen during the user exterior handle operation and during side door closing. The exterior handle system during the operation could generate a squeak between interface parts, if materials and geometric tolerances was not been carefully designed. Also, vibration generated during door closing effort, might generate squeak between parts since the reinforcement for exterior handle touches the outer sheet metal internally. For this reason several guidelines might be included to avoid potential noise condition for this system during vehicle lifetime as correct material reduce friction between parts, taking into consideration the geometric condition between parts. Plus, coupling system on handles two pieces should also be evaluated to avoid squeak during use.
Technical Paper

Root Cause Identification and Methods of Reducing Rear Window Buffeting Noise

2007-05-15
2007-01-2402
Rear Window Buffeting (RWB) is the low-frequency, high amplitude, sound that occurs in many 4-door vehicles when driven 30-70 mph with one rear window lowered. The goal of this paper is to demonstrate that the mechanisms of RWB are similar to that of sun roof buffeting and to describe the results of several actions suspected in contributing to the severity of RWB. Finally, the results of several experiments are discussed that may lend insight into ways to reduce the severity of this event. A detailed examination of the side airflow patterns of a small Sport Utility Vehicle (SUV) shows these criteria exist on a small SUV, and experiments to modify the SUV airflow pattern to reduce RWB are performed with varying degrees of success. Based on the results of these experiments, design actions are recommended that may result in the reduction of RWB.
Technical Paper

Objective chime sound quality evaluation

2006-11-21
2006-01-2667
Customer perception of vehicle quality and safety is based on many factors. One important factor is the customers impression of the sounds produced by body and interior components such as doors, windows, seats, safety belts, windshield wipers, and other similar items like sounds generated automatically for safety and warning purposes. These sounds are typically harmonic or constant, and the relative level of perception, duration, multiplicity, and degree of concurrence of these sounds are elements that the customer will retain in an overall quality impression. Chime sounds are important to the customer in order to alert that something is not accomplished in a right way or for safe purposes. The chimes can be characterized by: sound level perception, frequency of the signal, shape of the signal, duration of the “beep” and the silence duration.
Technical Paper

A Parametric Approach for Vehicle Frame Structure Dynamics Analysis

2007-05-15
2007-01-2335
The capability to drive NVH quality into vehicle frame design is often compromised by the lack of available predictive tools that can be developed and applied within the timeframe during which key architectural design decisions are required. To address this need, a new parametric frame modeling approach was developed and is presented in this paper. This fully parameterized model is capable of fast modal, static stiffness & weight assessments, as well as DSA/optimization for frame design changes. This tool has been proven to be effective in improving speed, quality and impact of NVH hardware decisions.
Technical Paper

Design for Assembly: An AHP Approach for Automotive Front End Component Design Evaluation

2007-04-16
2007-01-0522
Design for assembly (DFA) is a prominent strategy for manufacturing cost reduction in automotive industries. DFA in automotive component design is a complicated process since several competing targets have to be considered simultaneously in designing various functions and features. It requires specialized design knowledge as well as extensive quantitative analysis, comparison and evaluation. Analytical Hierarchic Process (AHP) is one of the tools that can assist such design and evaluation processes. It has been successfully applied in various processes when multiple competing goals and characteristics are involved. In this paper, we propose the application of AHP for DFA in automotive component design and present a case study involving car front end component design.
Technical Paper

Integration of Chassis Frame Forming Analysis into Performance Models to More Accurately Evaluate Crashworthiness

1998-02-23
980551
For Body on Frame vehicles, the chassis truck frame absorbs approximately 70% of the kinetic energy created from a frontal impact. Traditional performance analysis of the chassis utilizes standardized material properties for the Finite Element (FE) Model. These steel properties do not reflect any strain hardening effects that occur during the forming process. This paper proposes a process that integrates the frame side rail forming analysis results into the FE crash model. The process was implemented on one platform at Ford Motor Company to quantify the effects. The forming analysis provided material thinout, yield strength, and tensile strength which were input into the performance model. With the modified properties, the frame deceleration pulse and buckling mode exhibited different characteristics. The integration of CAE disciplines is the next step in increasing the predictability of analytical tools.
Technical Paper

The Effect of Contact Surface and Bolt Torque Variations on the Brake Rotor Run-Out

1998-02-23
980596
Deformation of the hub, rotor, and the wheel results in lateral run-out of the rotor. The effect of contact surface variations and bolt forces on the deformation is investigated. It is analytically shown that the run-out due to deformation is caused primarily due to the radial and circumferential moments generated in the hub and the rotor due to bolt tightening. Case studies illustrate the interaction between hub, rotor, and the wheel for various surface conditions. Design guidelines are provided to reduce rotor run-out.
Technical Paper

The Effect of Friction Modifiers on the Low-Speed Friction Characteristics of Automatic Transmission Fluids Observed with Scanning Force Microscopy

1998-02-23
981099
The effect of friction modifiers on the low-speed frictional properties of automatic transmission fluids (ATFs) was investigated by scanning force microscopy (SFM). A clutch lining material was covered by a droplet of test ATF, and a steel tip was scanned over the sample. The scanning speeds were varied from 0.13 to 8.56 mm /sec, and the frictional force was deduced from the torsion of the SFM cantilever. A reduction in dynamic friction due to the addition of the friction modifier was clearly observed over the entire speed range. This indicates that the boundary lubrication mechanism is dominant under this condition, and therefore surface-active friction modifiers can effectively improve the frictional characteristics. The friction reduction was more pronounced at lower sliding speeds. Thus addition of friction modifiers produced a more positive slope in the μ-ν (friction vs. sliding speed) plots, and would contribute to make wet clutch systems less susceptible to shudder vibrations.
X