Refine Your Search

Topic

Search Results

Journal Article

Optimization Matching of Powertrain System for Self-Dumping Truck Based on Grey Relational Analysis

2015-04-14
2015-01-0501
In this paper, the performance simulation model of a domestic self-dumping truck was established using AVL-Cruise software. Then its accuracy was checked by the power performance and fuel economy tests which were conducted on the proving ground. The power performance of the self-dumping truck was evaluated through standing start acceleration time from 0 to 70km/h, overtaking acceleration time from 60 to 70km/h, maximum speed and maximum gradeability, while the composite fuel consumption per hundred kilometers was taken as an evaluation index of fuel economy. A L9 orthogonal array was applied to investigate the effect of three matching factors including engine, transmission and final drive, which were considered at three levels, on the power performance and fuel economy of the self-dumping truck. Furthermore, the grey relational grade was proposed to assess the multiple performance responses according to the grey relational analysis.
Technical Paper

Parameter Matching of Planetary Gearset Characteristic Parameter of Power-Spilt Hybrid Vehicle

2021-09-16
2021-01-5088
To quickly and efficiently match the planetary gearset characteristic parameter of power-spilt hybrid vehicles so that their oil-saving potential can be maximized, this study proposes a parameter matching method that comprehensively considers energy management strategy and driving cycle based on an analysis of vehicle instantaneous efficiency. The method is used to match the planetary characteristic parameter of a power-split hybrid light truck. The relevant conclusions are compared with the influence of various planetary characteristic parameters on fuel consumption obtained through simulation under typical operating conditions. The simulation results show that the influence laws of the various planetary characteristic parameters on vehicle average efficiency are similar to those on fuel consumption. The proposed parameter-matching method based on vehicle efficiency analysis can effectively match the planetary characteristic parameter for power-split hybrid powertrains.
Technical Paper

Temperature Compensation Control Strategy of Assist Mode for Hydraulic Hub-Motor Drive Vehicle

2020-04-21
2020-01-5046
Based on the traditional heavy commercial vehicle, hydraulic hub-motor drive vehicle (HHMDV) is equipped with a hydraulic hub-motor auxiliary drive system, which makes the vehicle change from the rear-wheel drive to the four-wheel drive to improve the traction performance on low-adhesion road. In the typical operating mode of the vehicle, the leakage of the hydraulic system increases because of the oil temperature rising, this makes the control precision of the hydraulic system drop. Therefore, a temperature compensation control strategy for the assist mode is proposed in this paper. According to the principle of flow continuity, considering the loss of the system and the expected wheel speed, the control strategy of multifactor target pump displacement based on temperature compensation is derived. The control strategy is verified by the co-simulation platform of MATLAB/Simulink and AMESim.
Journal Article

A Lane-Changing Decision-Making Method for Intelligent Vehicle Based on Acceleration Field

2018-04-03
2018-01-0599
Taking full advantage of available traffic environment information, making control decisions, and then planning trajectory systematically under structured roads conditions is a critical part of intelligent vehicle. In this article, a lane-changing decision-making method for intelligent vehicle is proposed based on acceleration field. Firstly, an acceleration field related to relative velocity and relative distance was built based on the analysis of braking process, and acceleration was taken as an indicator of safety evaluation. Then, a lane-changing decision method was set up with acceleration field while considering driver’s habits, traffic efficiency and safety. Furthermore, velocity regulation was also introduced in the lane-changing decision method to make it more flexible.
Journal Article

A Novel Method of Radar Modeling for Vehicle Intelligence

2016-09-14
2016-01-1892
The conventional radar modeling methods for automotive applications were either function-based or physics-based. The former approach was mainly abstracted as a solution of the intersection between geometric representations of radar beam and targets, while the latter one took radar detection mechanism into consideration by means of “ray tracing”. Although they each has its unique advantages, they were often unrealistic or time-consuming to meet actual simulation requirements. This paper presents a combined geometric and physical modeling method on millimeter-wave radar systems for Frequency Modulated Continuous Wave (FMCW) modulation format under a 3D simulation environment. With the geometric approach, a link between the virtual radar and 3D environment is established. With the physical approach, on the other hand, the ideal target detection and measurement are contaminated with noise and clutters aimed to produce the signals as close to the real ones as possible.
Technical Paper

Simulation of Curved Road Collision Prevention Warning System of Automobile Based on V2X

2020-04-14
2020-01-0707
The high popularity of automobiles has led to frequent collisions. According to the latest statistics of the United Nations, about 1.25 million people worldwide die from road traffic accidents each year. In order to improve the safety of vehicles in driving, the active safety system has become a research hotspot of various car companies and research institutions around the world. Among them, the more mature and popular active security system are Forward Collision Warning(FCW) and Autonomous Emergency Braking(AEB). However, the current active safety system is based on traditional sensors such as radar and camera. Therefore, the system itself has many limitations due to the shortage of traditional sensors. Compared to traditional sensors, Vehicle to Everything (V2X) technology has the advantages of richer vehicle parameter information, no perceived blind spots, dynamic prediction of dangerous vehicle status, and no occlusion restriction.
Technical Paper

Trajectory Planning and Tracking for Four-Wheel-Steering Autonomous Vehicle with V2V Communication

2020-04-14
2020-01-0114
Lane-changing is a typical traffic scene effecting on road traffic with high request for reliability, robustness and driving comfort to improve the road safety and transportation efficiency. The development of connected autonomous vehicles with V2V communication provide more advanced control strategies to research of lane-changing. Meanwhile, four-wheel steering is an effective way to improve flexibility of vehicle. The front and rear wheels rotate in opposite direction to reduce the turning radius to improve the servo agility operation at the low speed while those rotate in same direction to reduce the probability of the slip accident to improve the stability at the high speed. Hence, this paper established Four-Wheel-Steering(4WS) vehicle dynamic model and quasi real lane-changing scenes to analyze the motion constraints of the vehicles.
Technical Paper

Intention-aware Lane Changing Assistance Strategy Basing on Traffic Situation Assessment

2020-04-14
2020-01-0127
Traffic accidents avoidance is one of the main advantages for automated vehicles. As one of the main causes of vehicle collision accidents, lane changing of the ego vehicle in case that the obstacle vehicles appear in the blind spot with uncertain motion intentions is one of the main goals for the automated vehicle. An intention-aware lane changing collision assistance strategy basing on traffic situation assessment in the complex traffic scenarios is proposed in this paper. Typical Regions of Interest (ROI) within the detection range of the blind spots are selected basing on the road topology structures and state space consisting of the ego vehicle and the obstacle vehicles. Then the motion intentions of the obstacle vehicles in ROI are identified basing on Gaussian Mixture Models (GMM) and the corresponding motion trajectories are predicted basing on the state equation.
Technical Paper

Virtual Simulation Research on Vehicle Ride Comfort

2006-10-31
2006-01-3499
In this paper, a computer model of a multi-purpose vehicle (MPV) is built to study vehicle ride comfort by multi-body system dynamic theory. Virtual test rigs are developed to perform natural body frequency tests and random road input tests on the complete vehicle multi-body dynamic model. By comparing simulation results with field test results, the accuracy of the model is validated and the feasibility of virtual test rigs is established.
Technical Paper

Temperature Compensation Control Strategy of Creep Mode for Hydraulic Hub-Motor Drive Vehicle

2020-06-09
2020-01-5059
Based on traditional heavy commercial vehicles, a hydraulic hub-motor drive vehicle (HHMDV) is equipped with a set of hydraulic hub-motor auxiliary system (HHMAS) to improve the traction performance and adaptability under complex conditions. In the case of low-speed operation or mechanical transmission failure, the creep mode (CM) can be used to drive the vehicle. Aiming at a common hydraulic system problem that flow loss increases due to temperature variation, a temperature compensation control strategy of the CM is proposed in this paper. By analyzing the speed regulation characteristics of the closed loop of the system in the CM, combined with the efficiency of the hydraulic variable pump (HP) and the hydraulic quantitative motor (HM), and aiming at adjusting the engine work in the optimal curve of the engine, the temperature compensation factor is introduced to control the HP displacement with hydraulic stepless speed regulation.
Technical Paper

Improvements on the Start Performance of Diesel Engine by Fuel Control Strategy Optimization and Heating Measures

2008-06-23
2008-01-1646
The incomplete combustion and misfire of diesel engine during starting result in unwanted white smoke. The histories of combustion and emission in different phases under different start conditions were studied in this paper. The optimization of the fuel injection control strategy under start conditions was performed. When the diesel engine is started under low temperature, the control strategy adapted to start the engine with a certain constant fuel mass injected per cycle, there may be misfire cycles in the initial period or in the transitional process, which is mainly caused by the mismatch between the fuel mass injected per cycle and the instantaneous engine speed. Therefore, an optimized control strategy was put forward, namely, the engine starts with high fuel mass injection in the first several cycles and then decreases step by step during the transitional period until it operates at idle condition. This strategy was validated to decrease significantly the misfire cycles.
Technical Paper

Auxiliary Drive Control Strategy of Hydraulic Hub-Motor Auxiliary System for Heavy Truck

2016-09-27
2016-01-8113
To improve traditional heavy commercial vehicles performance, this paper introduces a novel hydraulic hub-motor auxiliary system, which could achieve auxiliary driving and auxiliary braking function. Firstly, the system configuration and operation modes are described. In order to achieve coordinating control and distribution of the engine power between mechanical and hydraulic paths, the paper proposes an optimal algorithm based on enhance of vehicle slip efficiency and the results show that displacement of hydraulic variable pump relates with the transmission gear ratio. And then the hydraulic pump displacement controller is designed, in which the feedforward and feedback strategy is adopted. Considering the characteristics of hydraulic hub-motor auxiliary system, a layered auxiliary drive control strategy is proposed in the paper, which includes signal layers, core control layers and executive layers.
Technical Paper

Optimization of Suspension System of Self-Dumping Truck Using TOPSIS-based Taguchi Method Coupled with Entropy Measurement

2016-04-05
2016-01-1385
This study presents a hybrid optimization approach of TOPSIS-based Taguchi method and entropy measurement for the determination of the optimal suspension parameters to achieve an enhanced compromise among ride comfort, road friendliness which means the extent of damage exerted on the road by the vehicles, and handling stabilities of a self-dumping truck. Firstly, the full multi-body dynamic vehicle model is developed using software ADAMS/Car and the vehicle model is then validated through ride comfort road tests. The performance criterion for ride comfort evaluation is identified as root mean square (RMS) value of frequency weighted acceleration of cab floor, while the road damage coefficient is used for the evaluation of the road-friendliness of a whole vehicle. The lateral acceleration and roll angle of cab were defined as evaluation indices for handling stability performance.
Technical Paper

Slope Starting Control of Off-Road Vehicle with 32-Speed Binary Logic Automatic Transmission

2022-01-03
2022-01-5001
Taking an off-road vehicle equipped with 32-speed binary logic automatic transmission (AT) as the research object, the slope starting control research is carried out. The slope starting process is divided into the overcoming resistance stage, the sliding friction stage, and the synchronization stage. The control strategies for each stage are designed respectively. Focusing on the control of the sliding friction stage, the equivalent two-speed model of the starting clutch is established, which realizes the calculation of the speed difference and the slip rate between the driving and driven ends of the starting clutch. Furthermore, the slope starting control strategy based on the proportional-integral-derivative (PID) control of the clutch slip rate is designed. Through the simulation tests of the vehicle starting at different slopes, the correctness of the slope starting control strategy has been verified by MATLAB/Simulink.
Technical Paper

Deterioration Characteristic of Catalyzed DPF Applied on Diesel Truck Durable Ageing

2018-09-10
2018-01-1701
In this paper, it was researched the degradation characteristics of catalytic performance of three kinds of DPFs (C1, C2 and C3, with precious metal concentrations being 15, 25 and 35 g/ft3 respectively) after diesel truck aging. It is found out that the crystallinity of three kinds of DPF samples (Used) in full vehicle aging was higher than that of fresh samples (Fresh) and aged samples (Aged) in the laboratory. Compared with Fresh samples, the concentration of Pt atom in precious metal on the surface of Aged and Used samples tends to decrease in most cases. Activities to CO and C3H8 of Aged and Used samples of three kinds of DPFs had all been degraded, and activity degradation showed a substantial correlation with concentration reduction rate of precious metal on the carrier surface. NO2 productivity of Used samples all rose. Crystallinity of DPF samples after full vehicle aging in Inlet, Middle and Outlet areas successively increased.
Technical Paper

An Optimization of Suspension Linkages for Wheel-Legged Vehicle

2019-04-02
2019-01-0167
The guiding mechanism of vehicle suspension can keep the wheels moving along planned trajectory. The geometrical design of the reasonable suspension guide mechanism can reduce the vibration transmitted to the body, improve trafficability and handling stability. The vehicle suspension design method was applied to the wheel-legged vehicle, enhancing ride performance. The optimization of suspension hard points can be obtained by using single variable method, adjusting each hard point coordinate independently. It is also widely recommended by using intelligent algorithm to solve well-designed multi-objective parameter optimization function. In this study, the multi-objective parameter optimization function was solved by using the NSGA-II (Non-dominated Sorted Genetic Algorithm-II). Computer simulations with half-car model were used to support the analysis in this study. ADAMS multibody dynamics software was also used to verify the reliability of the results.
Technical Paper

Research on Adaptive Cruise Control Strategy Considering the Disturbance of Preceding Vehicle and Multi-Objective Optimization

2021-04-06
2021-01-0338
Adaptive Cruise Control (ACC) includes three modes: cruise control, car following control, and autonomous emergency braking. Among them, the car following control mode is mainly used to manage the speed and vehicle spacing approach the preceding vehicle within the range of smooth acceleration changes. In addition, although the motion information signal of the preceding vehicle can be collected by auxiliary equipment, it is still a random variable and normally regarded as a disturbance to affect the performance of vehicle controller. Therefore, this paper proposed an ACC strategy considering the disturbance of the preceding vehicle and multi-objective optimization.
Technical Paper

Optimization for Driveline Parameters of Self-Dumping Truck Based on Particle Swarm Algorithm

2015-04-14
2015-01-0472
In this study, with the aim of reducing fuel consumption and improving power performance, the optimization for the driveline parameters of a self-dumping truck was performed by using a vehicle performance simulation model. The accuracy of this model was checked by the power performance and fuel economy tests. Then the transmission ratios and final drive ratio were taken as design variables. Meanwhile, the power performance of the self-dumping truck was evaluated through standing start acceleration time from 0 to 70km/h, maximum speed and maximum gradeability, while the combined fuel consumption of C-WTVC drive cycle was taken as an evaluation index of fuel economy. The multi-objective optimization for the power performance and fuel economy was then performed based on particle swarm optimization algorithm, and the Pareto optimal set was obtained. Furthermore, the entropy method was proposed to determine the weight of fuel consumption and acceleration time.
Technical Paper

Research on Roll Vibration Characteristics of a Truck's Front Suspension

2015-04-14
2015-01-0635
For the roll vibration problem of a Truck, a 4-DOF roll vibration model of its front suspension system was built. According to dynamics theory, the complex modal vibration modes of the model were all obtained. At the same time, the frequency response functions of frame roll angle acceleration, the relative dynamic load of wheel and the suspension dynamic deflection were respectively presented. Then their characteristics were respectively researched. In the process of characteristic analysis, a new system parameter was proposed, which is the space ratio of the space between suspensions of left and right sides and the wheel track of the front axle (space ratio in short). At last, the influence of system parameters on the vibration transmission property was also reserached, which included the natural frequency of the frame, the damping ratio, the stiffness ratio, the mass ratio, the rotational inertia ratio and the space ratio.
Technical Paper

Comparative Analysis of Truck Ride Comfort of 4 Degree of Freedom Rigid-Elastic Model with 2 Degree of Freedom Rigid Model

2015-04-14
2015-01-0615
In order to study the influence of body flexibility on the truck ride comfort, a 4 DOF half vibration model of truck based on the motion synthesis between rigid body and body flexibility is established using elastic beam theory of equal section with both free ends. At the same time, a corresponding 2 DOF rigid vibration model is also built. The frequency response functions of system and response variables of two models are derived based on front wheel. The power spectral densities and the root mean square values of body acceleration, dynamic deflections and relative dynamic loads are obtained. By comparing the simulation results of rigid-elastic model and rigid model, it shows that body flexibility has a great impact on truck ride comfort and it cannot be ignored.
X