Refine Your Search

Topic

Affiliation

Search Results

Journal Article

Detailed HCCI Exhaust Speciation and the Sources of Hydrocarbon and Oxygenated Hydrocarbon Emissions

2008-04-14
2008-01-0053
Detailed exhaust speciation measurements were made on an HCCI engine fueled with iso-octane over a range of fueling rates, and over a range of fuel-stratification levels. Fully premixed fueling was used for the fueling sweep. This sweep extended from a fuel/air equivalence ratio (ϕ) of 0.28, which is sufficiently high to achieve a combustion efficiency of 96%, down to a below-idle fueling rate of ϕ = 0.08, with a combustion efficiency of only 55%. The stratification sweep was conducted at an idle fueling rate, using an 8-hole GDI injector to vary stratification from well-mixed conditions for an early start of injection (SOI) (40°CA) to highly stratified conditions for an SOI well up the compression stroke (325°CA, 35°bTDC-compression). The engine speed was 1200 rpm. At each operating condition, exhaust samples were collected and analyzed by GC-FID for the C1 and C2 hydrocarbon (HC) species and by GC-MS for all other species except formaldehyde and acetaldehyde.
Journal Article

Understanding the Chemical Effects of Increased Boost Pressure under HCCI Conditions

2008-04-14
2008-01-0019
One way to increase the load range in an HCCI engine is to increase boost pressure. In this modeling study, we investigate the effect of increased boost pressure on the fuel chemistry in an HCCI engine. Computed results of HCCI combustion are compared to experimental results in a HCCI engine. We examine the influence of boost pressure using a number of different detailed chemical kinetic models - representing both pure compounds (methylcyclohexane, cyclohexane, iso-octane and n-heptane) and multi-component models (primary reference fuel model and gasoline surrogate fuel model). We examine how the model predictions are altered by increased fueling, as well as reaction rate variation, and the inclusion of residuals in our calculations. In this study, we probe the low temperature chemistry (LTC) region and examine the chemistry responsible for the low-temperature heat release (LTHR) for wide ranges of intake boost pressure.
Journal Article

Pathline Analysis of Full-cycle Four-stroke HCCI Engine Combustion Using CFD and Multi-Zone Modeling

2008-04-14
2008-01-0048
This paper investigates flow and combustion in a full-cycle simulation of a four-stroke, three-valve HCCI engine by visualizing the flow with pathlines. Pathlines trace massless particles in a transient flow field. In addition to visualization, pathlines are used here to trace the history, or evolution, of flow fields and species. In this study evolution is followed from the intake port through combustion. Pathline analysis follows packets of intake charge in time and space from induction through combustion. The local scalar fields traversed by the individual packets in terms of velocity magnitude, turbulence, species concentration and temperatures are extracted from the simulation results. The results show how the intake event establishes local chemical and thermal environments in-cylinder and how the species respond (chemically react) to the local field.
Journal Article

Detailed Kinetic Modeling of HCCI Combustion with Isopentanol

2011-09-11
2011-24-0023
Isopentanol is an advanced biofuel that can be produced by micro-organisms through genetically engineered metabolic pathways. Compared to the more frequently studied ethanol, isopentanol's molecular structure has a longer carbon chain and includes a methyl branch. Its volumetric energy density is over 30% higher than ethanol, and it is less hygroscopic. Some fundamental combustion properties of isopentanol in an HCCI engine have been characterized in a recent study by Yang and Dec (SAE 2010-01-2164). They found that for typical HCCI operating conditions, isopentanol lacks two-stage ignition properties, yet it has a higher HCCI reactivity than gasoline. The amount of intermediate temperature heat release (ITHR) is an important fuel property, and having sufficient ITHR is critical for HCCI operation without knock at high loads using intake-pressure boosting. Isopentanol shows considerable ITHR, and the amount of ITHR increases with boost, similar to gasoline.
Journal Article

Effects of Fuel Laminar Flame Speed Compared to Engine Tumble Ratio, Ignition Energy, and Injection Strategy on Lean and EGR Dilute Spark Ignition Combustion

2017-03-28
2017-01-0671
Previous studies have shown that fuels with higher laminar flame speed also have increased tolerance to EGR dilution. In this work, the effects of fuel laminar flame speed on both lean and EGR dilute spark ignition combustion stability were examined. Fuels blends of pure components (iso-octane, n-heptane, toluene, ethanol, and methanol) were derived at two levels of laminar flame speed. Each fuel blend was tested in a single-cylinder spark-ignition engine under both lean-out and EGR dilution sweeps until the coefficient of variance of indicated mean effective pressure increased above thresholds of 3% and 5%. The relative importance of fuel laminar flame speed to changes to engine design parameters (spark ignition energy, tumble ratio, and port vs. direct injection) was also assessed.
Technical Paper

Effects of Toluene Addition to Primary Reference Fuel at High Temperature

2007-10-29
2007-01-4104
The ignition delay times of primary reference fuel (PRF) and toluene mixtures have been measured behind the reflected shock waves. The range of experiments covered combustion of fuel in diluted argon for stoichiometric mixtures, pressures of 2.5 atm, temperatures from 1200-1600 K, 0.4% of fuel concentration. The ignition delay times of n-heptane increased with the addition of toluene. However the ignition delay times of iso-octane decreased with the addition of toluene from 0 to 50% and increased from 50 to 100%. A detailed kinetic model with cross reactions considered in this study can not reproduce the trend of ignition delay times for iso-octane/toluene mixtures. From the reaction path analysis, it was suggested that cross reactions between alkenes and aromatics are required to account for these experimental results.
Technical Paper

Improving Ethanol Life Cycle Energy Efficiency by Direct Utilization of Wet Ethanol in HCCI Engines

2007-07-23
2007-01-1867
Homogenous Charge Compression Ignition (HCCI) is a new engine technology with fundamental differences over conventional engines. HCCI engines are intrinsically fuel flexible and can run on low-grade fuels as long as the fuel can be heated to the point of ignition. In particular, HCCI engines can run on “wet ethanol:” ethanol-in-water mixtures with high concentration of water, such as the high water content ethanol-in-water mixture that results from fermentation of corn mash. Considering that much of the energy required for processing fermented ethanol is spent in distillation and dehydration, direct use of wet ethanol in HCCI engines considerably shifts the energy balance in favor of ethanol.
Technical Paper

Detailed Kinetic Modeling of Toluene Combustion over a Wide Range of Temperature and Pressure

2007-07-23
2007-01-1885
The ignition delay times of toluene-oxygen-argon mixtures with fuel equivalence ratios from 0.5 to 1.5 and concentrations of toluene from 0.1 to 2.0% were measured behind reflected shock waves for temperatures 1270 to 1755 K and at a pressure of 2.4 ± 0.7 atm. A detailed chemical kinetic model has been developed on the basis of a kinetic mechanism proposed by Pitz et al. [1] to reproduce our experimental results as well as some literature data obtained in other shock tubes at pressures from 1.1 to 50 atm. It is found that the present chemical kinetic model could give better agreement on the pressure dependence of the ignition delay times than the previously proposed kinetic models.
Technical Paper

Development of a Pilot Scale Apparatus for Control of Solid Waste Using Low Temperature Oxidation

2007-07-09
2007-01-3135
In February 2004 NASA released “The Vision for Space Exploration.” The important goals outlined in this document include extending human presence in the solar system culminating in the exploration of Mars. Unprocessed waste poses a biological hazard to crew health and morale. The waste processing methods currently under consideration include incineration, microbial oxidation, pyrolysis and compaction. Although each has advantages, no single method has yet been developed that is safe, recovers valuable resources including oxygen and water, and has low energy and space requirements. Thus, the objective of this project is to develop a low temperature oxidation process to convert waste cleanly and rapidly to carbon dioxide and water. In the Phase I project, TDA Research, Inc. demonstrated the potential of a low temperature oxidation process using ozone. In the current Phase II project, TDA and NASA Ames Research Center are developing a pilot scale low temperature ozone oxidation system.
Technical Paper

Development of an Experimental Database and Chemical Kinetic Models for Surrogate Gasoline Fuels

2007-04-16
2007-01-0175
The development of surrogate mixtures that represent gasoline combustion behavior is reviewed. Combustion chemistry behavioral targets that a surrogate should accurately reproduce, particularly for emulating homogeneous charge compression ignition (HCCI) operation, are carefully identified. Both short and long term research needs to support development of more robust surrogate fuel compositions are described. Candidate component species are identified and the status of present chemical kinetic models for these components and their interactions are discussed. Recommendations are made for the initial components to be included in gasoline surrogates for near term development. Components that can be added to refine predictions and to include additional behavioral targets are identified as well. Thermodynamic, thermochemical and transport properties that require further investigation are discussed.
Technical Paper

Solid Waste Processing - An Essential Technology for the Early Phases of Mars Exploration and Colonization

1997-07-01
972272
Terraforming of Mars is the long-term goal of colonization of Mars. However, this process is likely to be a very slow process and conservative estimates involving a synergetic, technocentric approach suggest that it may take around 10,000 years before the planet can be parallel to that of Earth and where humans can live in open systems (Fogg, 1995). Hence, for the foreseeable future, any missions will require habitation within small confined habitats with high biomass to atmospheric mass ratios, thereby requiring that all wastes be recycled. Processing of the wastes will ensure predictability and reliability of the ecosystem and reduce resupply logistics. Solid wastes, though smaller in volume and mass than the liquid wastes, contain more than 90% of the essential elements required by humans and plants.
Technical Paper

Current and Planned Modifications to the Vapor Phase Catalytic Ammonia Removal (VPCAR) Technology in Response to the MSFC ECLS Long Duration Test Results

2008-06-29
2008-01-2141
The Vapor Phase Catalytic Ammonia Removal (VPCAR) Technology has undergone long duration testing at MSFC. The results of this testing revealed several areas in which the VPCAR Technology could be improved and those improvements are summarized here. These improvements include the replacement of several parts with units that are more durable, redesign of several pieces which proved to have mechanical weaknesses, and incorporation of some new designs in order to prevent other potential problems.
Technical Paper

Modeling Iso-octane HCCI Using CFD with Multi-Zone Detailed Chemistry; Comparison to Detailed Speciation Data Over a Range of Lean Equivalence Ratios

2008-04-14
2008-01-0047
Multi-zone CFD simulations with detailed kinetics were used to model iso-octane HCCI experiments performed on a single-cylinder research engine. The modeling goals were to validate the method (multi-zone combustion modeling) and the reaction mechanism (LLNL 857 species iso-octane) by comparing model results to detailed exhaust speciation data, which was obtained with gas chromatography. The model is compared to experiments run at 1200 RPM and 1.35 bar boost pressure over an equivalence ratio range from 0.08 to 0.28. Fuel was introduced far upstream to ensure fuel and air homogeneity prior to entering the 13.8:1 compression ratio, shallow-bowl combustion chamber of this 4-stroke engine. The CFD grid incorporated a very detailed representation of the crevices, including the top-land ring crevice and head-gasket crevice. The ring crevice is resolved all the way into the ring pocket volume. The detailed grid was required to capture regions where emission species are formed and retained.
Technical Paper

Plasma-Assisted Catalytic Reduction of NOx

1998-10-19
982508
Many studies suggest that lean-NOx SCR proceeds via oxidation of NO to NO2 by oxygen, followed by the reaction of the NO2 with hydrocarbons. On catalysts that are not very effective in catalyzing the equilibration of NO+O2 and NO2, the rate of N2 formation is substantially higher when the input NOx is NO2 instead of NO. The apparent bifunctional mechanism in the SCR of NOx has prompted the use of mechanically mixed catalyst components, in which one component is used to accelerate the oxidation of NO to NO2, and another component catalyzes the reaction between NO2 and the hydrocarbon. Catalysts that previously were regarded as inactive for NOx reduction could therefore become efficient when mixed with an oxidation catalyst. Preconverting NO to NO2 opens the opportunity for a wider range of SCR catalysts and perhaps improves the durability of these catalysts. This paper describes the use of a non-thermal plasma as an efficient means for selective partial oxidation of NO to NO2.
Technical Paper

Detailed Kinetic Modeling of Low-Temperature Heat Release for PRF Fuels in an HCCI Engine

2009-06-15
2009-01-1806
Now more than ever, the increasing strictness of environmental regulation and the stronger need of higher efficiency standards are pushing for the development of cleaner and energy-efficient powertrains. HCCI engines are suitable candidates to achieve these objectives. Understanding the autoignition process and how it is affected by operating conditions is central to the development of these engines. In addition to experiments, detailed kinetic modeling represents a very effective tool for gaining deeper insight into the fundamentals of HCCI autoignition and combustion. Indeed, modeling activities are today widely used in engine design, allowing a significant reduction in prototype development costs and providing a valuable support to the improvement of control strategies.
Technical Paper

Demonstrating Optimum HCCI Combustion with Advanced Control Technology

2009-06-15
2009-01-1885
We have converted a Caterpillar 3406 natural gas spark ignited engine to HCCI mode and used it as a test bed for demonstrating advanced control methodologies. Converting the engine required modification of most engine systems: piston geometry, starting, fueling, boosting, and (most importantly) controls. We implemented a thermal management system consisting of a recuperator that transfers heat from exhaust to intake gases and a dual intake manifold that permits precise cylinder-by-cylinder ignition control. Advanced control methodologies are used for (1) minimizing cylinder-to-cylinder combustion timing differences caused by small variations in temperature or compression ratio; (2) finding the combustion timing that minimizes fuel consumption; and (3) tuning the controller parameters to improve transient response.
Technical Paper

Results and Analysis from Reduced Gravity Experiments of the Flexible Membrane Commode Apparatus

2009-07-12
2009-01-2344
Two separate experimental rigs used in tests on NASA and Zero-G Corporation aircrafts flying low-gravity trajectories, and in the NASA 2.2 Second Drop Tower have been developed to test the functioning of the Flexible Membrane Commode (FMC) concept under reduced gravity conditions. The first rig incorporates the flexible, optically opaque membrane bag and the second rig incorporates a transparent chamber with a funnel assembly for evacuation that approximates the size of the membrane bag. Different waste dispensers have been used including a caulking gun and flexible hose assembly, and an injection syringe. Waste separation mechanisms include a pair of wire cutters, an iris mechanism, as well as discrete slug injection. The experimental work is described in a companion paper. This paper focuses on the obtained results and analysis of the data.
Technical Paper

Detailed Chemical Kinetic Modeling of Iso-octane SI-HCCI Transition

2010-04-12
2010-01-1087
We describe a CHEMKIN-based multi-zone model that simulates the expected combustion variations in a single-cylinder engine fueled with iso-octane as the engine transitions from spark-ignited (SI) combustion to homogenous charge compression ignition (HCCI) combustion. The model includes a 63-species reaction mechanism and mass and energy balances for the cylinder and the exhaust flow. For this study we assumed that the SI-to-HCCI transition is implemented by means of increasing the internal exhaust gas recirculation (EGR) at constant engine speed. This transition scenario is consistent with that implemented in previously reported experimental measurements on an experimental engine equipped with variable valve actuation. We find that the model captures many of the important experimental trends, including stable SI combustion at low EGR (~0.10), a transition to highly unstable combustion at intermediate EGR, and finally stable HCCI combustion at very high EGR (~0.75).
Technical Paper

Detailed Chemical Kinetic Modeling of Diesel Combustion with Oxygenated Fuels

2001-03-05
2001-01-0653
The influence of the addition of oxygenated hydrocarbons to diesel fuels has been studied, using a detailed chemical kinetic model. Resulting changes in ignition and soot precursor production have been examined. N-heptane was used as a representative diesel fuel, and methanol, ethanol, dimethyl ether, dimethoxymethane and methyl butanoate were used as oxygenated fuel additives. It was found that addition of oxygenated hydrocarbons reduced the production of soot precursors. When the overall oxygen content in the fuel reached approximately 30-40 % by mass, production of soot precursors fell effectively to zero, in agreement with experimental studies. The kinetic factors responsible for these observations are discussed.
Technical Paper

Influence of Charge Dilution on the Dynamic Stage of Combustion in a Diesel Engine

2001-03-05
2001-01-0551
A study of the influence of dilution, attained by air excess, upon the dynamic stage of combustion - the nucleus of a work producing cycle - in a diesel engine, is reported as a sequel of SAE 2000-01-0203. While the latter has been restricted to variation in dilution obtained by bleeding air compressed by the supercharger, here the scope of engine tests was expanded by incorporating an additional stage of compression. Besides revealing the mechanism of the dynamic stage, the paper demonstrates that its effectiveness is a linear function of the air excess coefficient, irrespectively how it is attained.
X