Refine Your Search

Topic

Search Results

Journal Article

Real-Time Optimal Energy Management of Heavy Duty Hybrid Electric Vehicles

2013-04-08
2013-01-1748
The performance of energy flow management strategies is essential for the success of hybrid electric vehicles (HEVs), which are considered amongst the most promising solutions for improving fuel economy as well as reducing exhaust emissions. The heavy duty HEVs engaged in cycles characterized by start-stop configuration has attracted widely interests, especially in off-road applications. In this paper, a fuzzy equivalent consumption minimization strategy (F-ECMS) is proposed as an intelligent real-time energy management solution for heavy duty HEVs. The online optimization problem is formulated as minimizing a cost function, in terms of weighted fuel power and electrical power. A fuzzy rule-based approach is applied on the weight tuning within the cost function, with respect to the variations of the battery state-of-charge (SOC) and elapsed time.
Journal Article

Coupled Level-Set Volume of Fluid Simulations of Water Flowing Over a Simplified Drainage Channel With and Without Air Coflow

2017-03-28
2017-01-1552
The motivation for this paper is to predict the flow of water over exterior surfaces of road vehicles. We present simulations of liquid flows on solid surfaces under the influence of gravity with and without the addition of aerodynamic forces on the liquid. This is done using an implementation of a Coupled Level Set Volume of Fluid method (CLSVOF) multiphase approach implemented in the open source OpenFOAM CFD code. This is a high fidelity interface-resolving method that solves for the velocity field in both phases without restrictions on the flow regime. In the current paper the suitability of the approach to Exterior Water Management (EWM) is demonstrated using the representative test cases of a continuous liquid rivulet flowing along an inclined surface with a channel located downstream perpendicular to the oncoming flow.
Technical Paper

Holistic Thermal Energy Modelling for Full Hybrid Electric Vehicles (HEVs)

2020-04-14
2020-01-0151
Full hybrid electric vehicles are usually defined by their capability to drive in a fully electric mode, offering the advantage that they do not produce any emissions at the point of use. This is particularly important in built up areas, where localized emissions in the form of NOx and particulate matter may worsen health issues such as respiratory disease. However, high degrees of electrification also mean that waste heat from the internal combustion engine is often not available for heating the cabin and for maintaining the temperature of the powertrain and emissions control system. If not managed properly, this can result in increased fuel consumption, exhaust emissions, and reduced electric-only range at moderately high or low ambient temperatures negating many of the benefits of the electrification. This paper describes the development of a holistic, modular vehicle model designed for development of an integrated thermal energy management strategy.
Technical Paper

Streamlined Tails - The Effects of Truncation on Aerodynamic Drag

2020-04-14
2020-01-0673
Significant aerodynamic drag reduction is obtained on a bluff body by tapering the rear body. In the 1930’s it was found that a practical low drag car body could be achieved by cutting off the tail of a streamlined shape. The rear end of a car with a truncated tail is commonly referred to as a Kamm back. It has often been interpreted as implying that the drag of this type of body is almost the same as that for a fully streamlined shape. From a review of the limited research into truncated streamlined tails it is shown in this paper that, while true for some near axisymmetric bodies, it is not the case for many more car-like shapes. For these shapes the drag reduction from an elongated tail varies almost linearly with the reduction in cross section area. A CFD simulation to determine the drag reduction from a truncated streamlined tail of variable length on the simple Windsor Body is shown by way of confirmation.
Technical Paper

Parametric Study into the Effects of Factors Affecting Real-World Vehicle Exhaust Emission Levels

2007-04-16
2007-01-1084
The work presented investigates the effect of road gradient, head-wind, horizontal road curvature, changes in tyre rolling radius, vehicle drag co-efficient and vehicle weight on real-world emission levels of a modern EURO-IV vehicle. A validated steady-state engine performance map based vehicle modeling approach has been used for the analysis. The results showed that a generalized correction factor to include the effect of road-gradient on real-world emission levels might not yield accurate results, since the emission levels are strongly dependent on the position of the vehicle operating parameters on the engine maps. In addition, it also demonstrated that the inclusion of horizontal road curvature such as roundabouts and traffic islands are essential for the estimation of the real-world emission levels.
Technical Paper

Human Factors Issues in the Application of a Novel Process Description Environment for Machine Design and Control Developed under the Foresight Vehicle Programme

2002-03-04
2002-01-0466
In the globalization of the automotive businesses, manufacturing companies and their suppliers are forced to distribute the various lifecycle phases in different geographical locations. Misunderstandings arising from the variety of personnel involved, each with different requirements, backgrounds, roles, cultures and skills for example can result in increased cost and development time. To enable collaborating companies to have a common platform for interaction, the COMPANION project at Loughborough University has been undertaken to develop a common model-based environment for manufacturing automotive engines. Through the use of this environment, the stakeholders will be able to “visualize” consistently the evolution of automated systems at every lifecycle stage i.e. requirements definition, specification, design, analysis, build, evaluation, maintenance, diagnostics and recycle.
Technical Paper

Aerodynamic Drag of a Compact SUV as Measured On-Road and in the Wind Tunnel

2002-03-04
2002-01-0529
Growing concerns about the environmental impact of road vehicles will lead to a reduction in the aerodynamic drag for all passenger cars. This includes Sport Utility Vehicles (SUVs) and light trucks which have relatively high drag coefficients and large frontal area. The wind tunnel remains the tool of choice for the vehicle aerodynamicist, but it is important that the benefits obtained in the wind tunnel reflect improvements to the vehicle on the road. Coastdown measurements obtained using a Land Rover Freelander, in various configurations, have been made to determine aerodynamic drag and these have been compared with wind tunnel data for the same vehicle. Repeatability of the coastdown data, the effects of drag variation near to zero yaw and asymmetry in the drag-yaw data on the results from coastdown testing are assessed. Alternative blockage corrections for the wind tunnel measurements are examined.
Technical Paper

The Potential of Thermoelectric Generator in Parallel Hybrid Vehicle Applications

2017-03-28
2017-01-0189
This paper reports on an investigation into the potential for a thermoelectric generator (TEG) to improve the fuel economy of a mild hybrid vehicle. A simulation model of a parallel hybrid vehicle equipped with a TEG in the exhaust system is presented. This model is made up by three sub-models: a parallel hybrid vehicle model, an exhaust model and a TEG model. The model is based on a quasi-static approach, which runs a fast and simple estimation of the fuel consumption and CO2 emissions. The model is validated against both experimental and published data. Using this model, the annual fuel saving, CO2 reduction and net present value (NPV) of the TEG’s life time fuel saving are all investigated. The model is also used as a flexible tool for analysis of the sensitivity of vehicle fuel consumption to the TEG design parameters. The analysis results give an effective basis for optimization of the TEG design.
Technical Paper

MIMO (Multiple-Input-Multiple-Output) Control for Optimising the Future Gasoline Powertrain - A Survey

2017-03-28
2017-01-0600
This paper surveys publications on automotive powertrain control, relating to modern GTDI (Gasoline Turbocharged Direct Injection) engines. The requirements for gasoline engines are optimising the airpath but future legislation suggests not only a finely controlled airpath but also some level of electrification. Fundamentals of controls modelling are revisited and advancements are highlighted. In particular, a modern GTDI airpath is presented based on basic building blocks (volumes, turbocharger, throttle, valves and variable cam timing or VCT) with an example of a system interaction, based on boost pressure and lambda control. Further, an advanced airpath could be considered with applications to downsizing and fuel economy. A further electrification step is reviewed which involves interactions with the airpath and requires a robust energy management strategy. Examples are taken of energy recovery and e-machine placement.
Technical Paper

A Fuel Cell System Sizing Tool Based on Current Production Aircraft

2017-09-19
2017-01-2135
Electrification of aircraft is on track to be a future key design principal due to the increasing pressure on the aviation industry to significantly reduce harmful emissions by 2050 and the increased use of electrical equipment. This has led to an increased focus on the research and development of alternative power sources for aircraft, including fuel cells. These alternative power sources could either be used to provide propulsive power or as an Auxiliary Power Unit (APU). Previous studies have considered isolated design cases where a fuel cell system was tailored for their specific application. To accommodate for the large variation between aircraft, this study covers the design of an empirical model, which will be used to size a fuel cell system for any given aircraft based on basic design parameters. The model was constructed utilising aircraft categorisation, fuel cell sizing and balance of plant sub-models.
Technical Paper

Interaction Between Ceramic Matrix Composite and Organic Pad Materials and its Impact on the Friction Performance

2011-09-18
2011-01-2350
Ceramic matrix composites (CMC) have been increasingly used as alternative materials of the rotors of friction brakes. However there is still a need for a better understanding of fundamentals of CMC rotors and their associated friction materials. In this paper, the friction performance at the initial stage was characterized by testing on a laboratory-scale dynamometer and a car for brakes consisting of rotors made of carbon-fiber-reinforced carbon-silicon carbide (Cf/C-SiC) composite, and pads with organic liners. The characteristics of friction surface and its evolution were studied through focused imaging on the surface of the rotor after testing on the dynamometer. Both dynamometer and vehicle tests showed that bedding was essential to reach the required coefficient of friction (CoF). Sustainable transfer layer was successfully deposited on the surface of silicon in the early stage of bedding, but the deposition became difficult on that of carbon constituents and silicon carbide.
Technical Paper

Review of Selection Criteria for Sensor and Actuator Configurations Suitable for Internal Combustion Engines

2018-04-03
2018-01-0758
This literature review considers the problem of finding a suitable configuration of sensors and actuators for the control of an internal combustion engine. It takes a look at the methods, algorithms, processes, metrics, applications, research groups and patents relevant for this topic. Several formal metric have been proposed, but practical use remains limited. Maximal information criteria are theoretically optimal for selecting sensors, but hard to apply to a system as complex and nonlinear as an engine. Thus, we reviewed methods applied to neighboring fields including nonlinear systems and non-minimal phase systems. Furthermore, the closed loop nature of control means that information is not the only consideration, and speed, stability and robustness have to be considered. The optimal use of sensor information also requires the use of models, observers, state estimators or virtual sensors, and practical acceptance of these remains limited.
Technical Paper

Using Pneumatic Hybrid Technology to Reduce Fuel Consumption and Eliminate Turbo-Lag

2013-04-08
2013-01-1452
For the vehicles with frequent stop-start operations, fuel consumption can be reduced significantly by implementing stop-start operation. As one way to realize this goal, the pneumatic hybrid technology converts kinetic energy to pneumatic energy by compressing air into air tanks installed on the vehicle. The compressed air can then be reused to drive an air starter to realize a regenerative stop-start function. Furthermore, the pneumatic hybrid can eliminate turbo-lag by injecting compressed air into manifold and a correspondingly larger amount of fuel into the cylinder to build-up full-load torque almost immediately. This paper takes the pneumatic hybrid engine as the research object, focusing on evaluating the improvement of fuel economy of multiple air tanks in different test cycles. Also theoretical analysis the benefits of extra boost on reducing turbo-lag to achieve better performance.
Technical Paper

On the Optimisation of Road Vehicle Leading Edge Radius in Varying Levels of Freestream Turbulence

2006-04-03
2006-01-1029
It has been recognised that the ideal flow conditions that exist in the modern automotive wind tunnel do not accurately simulate the environment experienced by vehicles on the road. This paper investigates the effect of varying one flow parameter, freestream turbulence, and a single shape parameter, leading edge radius, on aerodynamic drag. The tests were carried out at model scale in the Loughborough University Wind Tunnel, using a very simple 2-box shape, and in the MIRA Full Scale Wind Tunnel using the MIRA squareback Reference Car. Turbulence intensities up to 5% were generated by grids and had a strong effect on transcritical Reynolds number and Reynolds sensitivity at both model scale and full scale. There was a good correlation between the results in both tunnels.
Technical Paper

An Input Linearized Powertrain Model for the Optimal Control of Hybrid Electric Vehicles

2022-03-29
2022-01-0741
Models of hybrid powertrains are used to establish the best combination of conventional engine power and electric motor power for the current driving situation. The model is characteristic for having two control inputs and one output constraint: the total torque should be equal to the torque requested by the driver. To eliminate the constraint, several alternative formulations are used, considering engine power or motor power or even the ratio between them as a single control input. From this input and the constraint, both power levels can be deduced. There are different popular choices for this one control input. This paper presents a novel model based on an input linearizing transformation. It is demonstrably superior to alternative model forms, in that the core dynamics of the model (battery state of energy) are linear, and the non-linearities of the model are pushed into the inputs and outputs in a Wiener/Hammerstein form.
Journal Article

Modeling Transient Control of a Turbogenerator on a Drive Cycle

2022-03-29
2022-01-0415
GTDI engines are becoming more efficient, whether individually or part of a HEV (Hybrid Electric Vehicle) powertrain. For the latter, this efficiency manifests itself as increase in zero emissions vehicle mileage. An ideal device for energy recovery is a turbogenerator (TG), and, when placed downstream the conventional turbine, it has minimal impact on catalyst light-off and can be used as a bolt-on aftermarket device. A Ricardo WAVE model of a representative GTDI engine was adapted to include a TG (Turbogenerator) and TBV (Turbine Bypass Valve) with the TG in a mechanical turbocompounding configuration, calibrated using steady state mapping data. This was integrated into a co-simulation environment with a SISO (Single-Input, Single-Output) dynamic controller developed in SIMULINK for the actuator control (with BMEP, manifold air pressure and TG pressure ratio as the controlled variables).
Technical Paper

Quantifying the Information Value of Sensors in Highly Non-Linear Dynamic Automotive Systems

2022-03-29
2022-01-0626
In modern powertrains systems, sensors are critical elements for advanced control. The identification of sensing requirements for such highly nonlinear systems is technically challenging. To support the sensor selection process, this paper proposes a methodology to quantify the information gained from sensors used to control nonlinear dynamic systems using a dynamic probabilistic framework. This builds on previous work to design a Bayesian observer to deal with nonlinear systems. This was applied to a bimodal model of the SCR aftertreatment system. Despite correctly observing the bimodal distribution of the internal Ammonia-NOx Ratio (ANR) state, it could not distinguish which state is the true state. This causes issues for a control engineer who is less interested in how precise a measurement is and more interested in the location within control parameter space. Information regarding the dynamics of the systems is required to resolve the bimodality.
Technical Paper

Electric Vehicle Smart Charging Considering Fluctuating Electrical Grid Pricing and Extreme Weather

2023-04-11
2023-01-0709
As lithium-ion electric vehicle (EV) batteries are sensitive to the conditions they are exposed to during charging and discharging, operational control has been an important research area. While an understanding of the effects current load and operation temperature has on the ageing stability of a battery has been established, associated control strategies are yet to be fully optimized. Most battery charging studies utilize controlled ambient temperatures and basic defined cycles, which may only apply to a small subset of real-world EV consumers. This leads to control strategies that do not consider electrical grid price fluctuation, user driving habits or local weather conditions. This paper looks to propose improved smart charging strategies of EVs to reduce consumer costs while also increasing the battery longevity. To accomplish the primary objective, A model has been generated that simulates the standard charge cycle of a battery.
Technical Paper

Real Time Energy Management of Electrically Turbocharged Engines Based on Model Learning

2019-04-02
2019-01-1056
Engine downsizing is a promising trend to decarbonise vehicles but it also poses a challenge on vehicle driveability. Electric turbochargers can solve the dilemma between engine downsizing and vehicle driveability. Using the electric turbocharger, the transient response at low engine speeds can be recovered by air boosting assistance. Meanwhile, the introduction of electric machine makes the engine control more complicated. One emerging issue is to harness the augmented engine air system in a systematical way. Therefore, the boosting requirement can be achieved fast without violating exhaust emission standards. Another raised issue is to design an real time energy management strategy. This is of critical to minimise the required battery capacity. Moreover, using the on-board battery in a high efficient way is essential to avoid over-frequent switching of the electric machine. This requests the electric machine to work as a generator to recharge the battery.
Technical Paper

Managing Loads on Aircraft Generators to Prevent Overheat In-Flight

2014-09-16
2014-01-2195
On future UAVs it is envisaged that the power requirements of all on-board electrical systems will increase. In most flight (mission) situations the installed power generation will have adequate capacity to operate the aircraft. It is possible that during abnormal situations such as coolant blockage the generators on-board may be forced to operate under very high load conditions. The main failure mechanism for a generator is overheating and subsequent disintegration of windings, hence the research problem being addressed here is to manage the loads upon the generator to prevent overheats. The research presented here summarizes the modeling of the generator and formation of the load management system. Results are presented showing the system reallocating loads after a fault during flight, preventing overheat of the generators and successfully completing the mission.
X