Refine Your Search

Topic

Search Results

Technical Paper

Performance Modification of Three Cylinder Diesel Engine Ge-Rotor Oil Pump through Rotor and PRV System

2017-07-10
2017-28-1934
Current high rating thermal loaded engines must have super-efficient lubrication system to provide clean oil at appropriate pressure and appropriate lube oil temperature to every part of the engine at all engine RPM speeds and loads. So oil pump not only have to satisfy above parameters but also it should be durable till engine life. Gerotor pumps are internal rotary positive-displacement pumps in which the outer rotor has one tooth more than the inner rotor. The gear profiles have a cycloidal shape. Both are meshed in conjugate to each other. Gerotor takes up engine power through crankshaft and deliver to various engine consumers at required pressure and required time. Over the complete engine rpm speed and loads range, oil pump need to perform efficiently to provide proper functioning of the engine. Otherwise low oil pressure leads to more friction in the pump, seizure of bearings and final failure of the engine .High oil pressure can lead to failure in oil filter, gaskets and seal.
Technical Paper

Benefits of Variable Discharge Oil Pump on Performance of 3 Cylinder SI Engine

2017-01-10
2017-26-0051
Lubrication system is a critical factor for engine health. But it creates parasitic load and increased fuel consumption of the engine. The oil demand of an engine depends on engine speed, load, bearing clearances, operating temperature and engine's state of wear. Ideally, the oil pump should adapt the delivery volume flow to actual engine oil demand and should avoid unnecessary pumping of oil which causes increased power and fuel consumption. However in a conventional mechanical oil pump, there is no control on the oil flow and it is purely a function of operating speed. A variable discharge oil pump (VDOP) is an approach to reduce the parasitic losses wherein the oil flow is regulated based on the mechanical needs of the engine. This study is based on the results of a two stage VDOP installed on a 1.2 litre, 3 cylinder MPFI engine. The oil supply is regulated by a solenoid control which receives command from Engine Control Unit (ECU). The study was done in two stages.
Technical Paper

Aerodynamic Performance Assessment on Typical SUV Car Model by On-Road Surface Pressure Mapping Method

2021-10-01
2021-28-0188
Aerodynamics of on-road vehicles has come to the limelight in the recent years. Better aerodynamic design of vehicle would improve vehicle fuel efficiency with increased acceleration performance. To obtain best aerodynamic body, the series of design modifications and different testing methodologies must be involved in vehicle design and validation phase. Wind tunnel aerodynamic force measurement, road load determination and computational fluid dynamics were the common methods used to evaluate the aerodynamic behavior of the vehicle body. As a novel approach, the present work discusses about the on-road (Real time) testing methodology that is aimed to evaluate the aerodynamic performance of vehicle body using surface pressure mapping. A 64-Channel digital pressure scanner has been utilized in this work for mapping the pressure at different locations of the typical vehicle body.
Technical Paper

Side Door Closing Velocity Reduction Parameters in a SUV

2023-04-11
2023-01-0606
Side Door closing velocity is one of the key customer touch points which depicts the build quality of the vehicle. Side door closing velocity results from the interaction of different parts like door and body seals, door check arm, door hinge, latch, and alignment of door hinge axis. In this paper, a high door closing velocity issue in a sports utility vehicle is discussed. Physical studies are carried out to understand each parameter in door closing velocity and its contribution is defined in terms of velocity. Many physical trials are conducted to conclude the contribution of each parameter. Studies revealed that the body and door seal are contributing around 70% of door closing velocity. Check arm and hinge axis deviation are contributing around 10% of the door closing velocity. Physical trials are conducted by reducing the compression distance of the body seal.
Technical Paper

Development of 2.2 L CRDe Engine Meeting BS4 Emission Norms without the Aid of EGR Cooling

2018-07-09
2018-28-0069
The never-ending concern on the air quality and atmospheric pollution has paved way for more stringent emission legislations. Existing Diesel engine hardware face several problems on meeting the tough emission limits and they require more additional features to comply with the emission standards. The current research work throws light on the air path control approach to meet the Bharat stage 4 emission norms on 2.2 L Sports Utility Vehicle engine operating with EGR cooler and the techniques followed to meet the same emission norms without the application of EGR cooler which was successfully implemented on the vehicles enabling reduction of hardware. Also the migration of 2.2 L engine from 88 kW operating on Compression ratio 18.5 to 103 kW at a lower Compression ratio of 16.5 is a challenging process to achieve Nitrogen oxide emissions reduction at part loads.
Technical Paper

Effect of Gear Shift Indicator Technique Enhancing Improved Fuel Economy on SUV

2018-07-09
2018-28-0054
Improving the fuel economy of the vehicle resulting in energy conservation on long run is a challenging task in the automotive field without compromising the emission margins. Fuel economy improvement by effective driving is the main focus of this paper by the proper utilization of gears which can enable good fuel economy even when the vehicle is driven by different drivers. GSI technique was implemented on Sports utility vehicle operating with 2.2 l engine. Tests were carried with GSI and the effect of fuel consumption and emissions were compared to the regular driving cycle. Optimization of various gear shifting points were analyzed and implemented for better fuel economy keeping the drivability in mind, meeting the BS4 emission norms comfortably. The experiments were carried out in both cold and hot conditions to check the effect of GSI and positive results of fuel economy improvement was yielded.
Technical Paper

Cost and Weight Efficient Differential Housing for Off-Road Vehicles

2016-02-01
2016-28-0133
Differential in Gear Box play vital role in Tractors for assisting it in turning and also to take straight path. Light weight machine always have advantage in terms of fuel economy and performance. Weight optimized rotating part have additional benefits of saving power loss, against stationary dead weight. Differential Housing is such a part, which rotates during the vehicle motion and torque transmission. [1] This paper describes a method by which weight of the Differential Housing is optimized. In this particular body of work, additional constraints of avoiding any change in existing cold forged parts like Bevel Gear & Pinion. This also have additional benefit of enhanced flow of Oil inside Differential Housing for better lubrication of Bevel Gears and Pinion. This resulted in weight saving of Differential Housing and finally fuel economy of Tractor.
Technical Paper

Performance Optimization of Single Cylinder Diesel Engine Oil Pump through PRV and Rotor System

2015-01-14
2015-26-0026
Oil pump is one of the important engine parasitic loads which takes up engine power through crankshaft to deliver oil flow rate according to engine demand to maintain required oil pressure. The proper functioning of oil pump along with optimum design parameters over various operating conditions is considered for required engine oil pressure. Pressure relief passage is also critical from design point of view as it maintains the required oil pressure in the engine. Optimal levels of oil pressure and flow are very important for satisfied performance and lubrication of various engine parts. Low oil pressure will lead to seizure of engine and high oil pressure leads to failure of oil filters, gasket sealing, etc. Optimization of pressure relief passage area along with other internal systems will also reduce the power consumed by the pump.
Technical Paper

Customized ROPS Application for Configurable Design at Concept Level

2020-09-25
2020-28-0474
Tractor roll over is the most common farm-related cause of fatalities nowadays. ROPS (Roll-Overprotective Structures) are needed to prevent serious injury and death. It creates a protective zone around the operator when a rollover occurs. In India the ROPS is getting mandatory across all HP ranges except narrow track. In the present study states the customized ROPS application for configurable design such as Automated safety zone for all homologation standards, ROPS A0-D excel calculator for selection of material at concept stage and bolt calculator for selection of size. For the above applications below aspects need to consider such as Tractor weight, Rear housing mounting, Operator seat index position (SIP), Seat reference points (SRP) and all ROPS homologation standards. This ROPS application is to reduce the timeline, manual error and ensure the reliability of the modular optimal design for various platforms and variants.
Technical Paper

Parametric Calculation and Significance of Engine Dynamic Torque in Performance Benchmarking of a Vehicle

2019-10-11
2019-28-0028
The automotive industries around the world is undergoing massive transformation towards identifying technological capabilities to improve vehicle performance. In this regard, the engine dynamic torque plays a crucial role in defining the transient performance and drivability of a vehicle. Moreover, the dynamic torque is used as a visualization parameter in performance prediction of a vehicle to set the right engineering targets and to assess the engine potential. Hence, an accurate measurement and prediction of the engine dynamic torque is required. However, there are very few methodologies available to measure the engine dynamic torque with reasonable accuracy and minimum efforts. The measurement of engine brake torque using a torque transducer is one of the potential methods. However, it requires a lot of effort and time to instrument the vehicle. It is also possible to back-calculate the engine torque based on fuel injection quantity and other known engine parameters.
Technical Paper

Emission and Noise Optimization of CRDe Engine with Pilot Injection Strategies

2019-10-11
2019-28-0019
The combustion strategies play a key role in emission improvisation and noise reduction on diesel engines equipped for higher emission norus. This paper clearly discussed on the selection of various operating points for optimization and employing of proper calibration strategies like pilot strategy, Main injection timing, EGR type and rail pressure variation for best emission and noise output. Various optimization techniques have been implemented in our study. Since the pilot injection quantity as well as timing are varied in our paper, careful matrix formulation is required to determine the best optimum point. Around 340 points were obtained on varying pilot quantity and pilot separation sweep chosen at single engine speed and load for both the pilots. Out of the above points, 5 sensitive points were selected ensuring the sensitivity of the emissions and noise.
Technical Paper

Digital Automotive AC Pulldown Prediction in a Real Driving Condition

2019-12-30
2019-01-5090
Automotive Original Equipment Manufacturers (OEMs) are always striving to deliver fast Air-Conditioning (AC) pulldown performance with consistent distribution of cabin temperature to meet customer expectations. The ultimate test is the OEM standard, called “AC Pull Down,” conducted at high ambient temperature and solar load conditions with a prescribed vehicle drive cycle. To determine whether the AC system in the vehicle has the capacity to cool the cabin, throughout the drive cycle test, cabin temperature measurements are evaluated against the vehicle target. If the measured cabin temperatures are equal or lower than the required temperatures, the AC system is deemed conventional for customer usage. In this paper, numerical predictions of the cabin temperatures to replicate the AC pulldown test are presented. The AC pulldown scenario is carried out in a digital Climatic Wind Tunnel simulation. The solution used in this study is based on a coupled approach.
Technical Paper

Experimental Investigation on the Effect of Tire Pressure on Ride Dynamics of a Passenger Car

2019-04-02
2019-01-0622
Ride is essentially the outcome of coupled dynamics of various involved sub-systems which make it too complex to deal analytically. Tires, amongst these, are known to be highly nonlinear compliant systems. Selection of tires specifications such as rated tyre pressure, etc. are generally decided through subjective assessment. While experts agree that tyre pressure affects the attributes such as ride to a noticeable degree, the quantification of the change often remains missing. In the current work, vibration levels of various sub-systems relevant to ride in an SUV are measured for three different tyre pressures at different speeds over the three randomly generated roads. For the purpose, artificial road profiles of classes A, B and C are synthesized from the spectrum of road classes defined in ISO 8608:2016 and reproduced on a four-poster test rig.
Technical Paper

Performance Optimization of Single Cylinder Diesel Engine Oil Pump through PRV and Rotor System

2015-01-14
2015-26-0028
Oil pump is one of the important engine parasitic loads which takes up engine power through crankshaft to deliver oil flow rate according to engine demand to maintain required oil pressure. The proper functioning of oil pump along with optimum design parameters over various operating conditions is considered for required engine oil pressure. Pressure relief passage is also critical from design point of view as it maintains the required oil pressure in the engine. Optimal levels of oil pressure and flow are very important for satisfied performance and lubrication of various engine parts. Low oil pressure will lead to seizure of engine and high oil pressure leads to failure of oil filters, gasket sealing, etc. Optimization of pressure relief passage area along with other internal systems will also reduce the power consumed by the pump.
Technical Paper

Innovative Setting Bracket Design to Improve the Tractor Fit and Finish between the Bonnet and Custer Panel (Scuttle)

2020-09-25
2020-28-0479
Innovative setting bracket design to improve the tractor Fit and Finish between the Bonnet and Custer panel (Scuttle) The paper presents an integrated approach for arriving a process to assemble scuttle regarding bonnet to achieve Gap and flushness aesthetic requirement. Variation is inevitable due to fitting of bonnet on Tractor front semi-chassis, scuttle fitting on tractor middle clutch housing and assembling many parts with different tolerances, hence the deviation (stack-up) obtained after their assembly varies from approximately -10.175 to 9.775 mm. This is quite large and gives a huge impact in aesthetic point of view. To overcome this issue, we introduced one Innovative intermediate bracket as the setting gauge which is assembled with reference to bonnet and scuttle is mounted on this setting bracket hence zero flushness and uniform achieved between bonnet and scuttle.
Technical Paper

Prediction of Oil Flow inside Tractor Transmission for Splash Type Lubrication

2019-01-09
2019-26-0082
This study introduces a method to examine the flow path of the lubricant inside a transmission housing of a tractor. A typical gearbox has several loads bearing elements which are in relative sliding motion to each other which causes heat to be released. The major sources of friction as well as heat are the meshing teeth between gears (sun/planet, planet/ring & power/range drive gear), thrust washers, thrust bearings and needle roller bearings. The churning of oil performs the vital function of both lubricating these sliding interfaces and cooling these sources of heat, thereby preventing failure of the gearbox. In this paper, we have applied VOF multiphase flow model and sliding meshing to simulate the fluid flow during splashed lubrication within a mating gear box. Lubrication oil dynamics and oil surface interaction with the air is modeled using VOF multiphase approach.
Technical Paper

Evaluation and Selection of Turbocharger Meeting BS6 Emission Norms for 1.99l Engine

2019-01-09
2019-26-0058
Migration to BS6 emission norms from BS4 levels involves strenuous efforts involving advanced technology and higher cost. The challenging part is on achieving the stringent emission norms without compromising the engine fuel economy, performance and NVH factors. Selection of hardware and attaining an optimal behaviour is therefore vital. This article focuses on the evaluation of three different configuration of turbochargers for the same engine to meet the BS6 emission norms and performance. The turbocharger samples used measure the same compressor diameter with varying trim ratios. Simulation and testing of turbochargers ensured positive results for confirmation of the system. Parameters like low speed torque, smoke and compressor efficiency were evaluated and analysed for all configurations. The safe limits of surge and choke regions of all the compressors were also studied and verified.
Technical Paper

Methodological Approach for Matching Gear and Final Drive Ratio for Better Fuel Economy, Performance and Drivability

2018-04-03
2018-01-0865
Fuel economy, performance and drivability are the three important parameters for evaluating the vehicle performance. Powertrain matching plays a major role in meeting the above targets. Fuel economy is measured based on city, highway and some user defined driving cycles which can be considered as real world usage profiles. Performance and Drivability is evaluated based on the in-gear, thru-gear (acceleration performance) and grade-ability performance. The load collective points of the engine greatly influence the engines performance, fuel economy and emissions, which in-turn depends on the N/V ratio of the vehicle. The optimal selection of gear and final drive ratios plays a key role in the optimization of the Powertrain for a particular vehicle. The current study involves dynamic simulation of the vehicle performance and fuel economy at transient engine test-bed for different gear and final drive ratio combinations using AVL DynoExcat-dynamometer.
Technical Paper

Numerical Investigation on the Design and Development of Automotive Exhaust Muffler –A Case Study

2023-11-10
2023-28-0085
Attaining better acoustic performance and back-pressure is a continuous research area in the design and development of passenger vehicle exhaust system. Design parameters such as tail pipe, resonator, internal pipes and baffles, muffler dimensions, number of flow reversals, perforated holes size and number etc. govern the muffler design. However, the analysis on the flow directivity from tail pipe is limited. A case study is demonstrated in this work on the development of automotive muffler with due consideration of back pressure and flow directivity from tail pipe. CFD methodology is engaged to evaluate the back pressure of different muffler configurations. The experimental and numerical results of backpressure have been validated. The numerical results are in close agreement with experimental results.
Technical Paper

Develop the Methodology to Predict the Engine Mount Loads from Road Load Data Using MSC ADAMS and FEMFAT Virtual Iteration

2020-04-14
2020-01-1401
Design of powertrain mounting bracket is always a challenge in achieving good NVH characteristics and durability with less weight. For this activity engine mount load is necessary to optimize the weight to meet durability and NVH targets. This paper introduces a new method to calculate engine mount loads from chassis accelerations. The method starts by measuring chassis acceleration near engine mount location, then reproducing the same chassis acceleration in Multi Axis Shaker Table (MAST), and finally extracting the load in engine mount using testing (using load cell). The MAST test actuator displacement input is imported into ADAMS and engine mount loads are extracted. The extracted loads are correlated with physical test results. The correlation includes load time history and peak-to-peak load range. It is recommended to implement this method in early vehicle design phases. Implementing engine mount bracket weight optimization is desirable in early design stages.
X