Refine Your Search

Topic

Search Results

Journal Article

Validation of Sled Tests for Far-Side Occupant Kinematics Using MADYMO

2010-04-12
2010-01-1160
Far-side occupants are not addressed in current government regulations around the world even though they account for up to 40% of occupant HARM in side impact crashes. Consequently, there are very few crash tests with far-side dummies available to researchers. Sled tests are frequently used to replicate the dynamic conditions of a full-scale crash test in a controlled setting. However, in far-side crashes the complexity of the occupant kinematics is increased by the longer duration of the motion and by the increased rotation of the vehicle. The successful duplication of occupant motion in these crashes confirms that a sled test is an effective, cost-efficient means of testing and developing far-side occupant restraints or injury countermeasures.
Technical Paper

Perceptions of Two Unique Lane Centering Systems: An FOT Interview Analysis

2020-04-14
2020-01-0108
The goal of this interview analysis was to explore and document the perceptions of two unique lane centering systems (S90’s Pilot Assist and CT6’s Super Cruise). Both systems offer a similar type of functionality (adaptive cruise control and lane centering), but have significantly different design philosophies and HMI (Human-Machine Interface) implementations. Twenty-four drivers drove one of the two vehicle models for a month as part of a field operational test (FOT) study. Upon vehicle return, drivers took part in a 60-minute semi-structured interview covering their perceptions of the vehicle’s various advanced driver-assistance systems (ADAS). Transcripts of the interviews were coded by two researchers, who tagged each statement with relevant system and perception code labels. For analysis, the perception codes were grouped into larger thematic bins of safety, comfort, driver attention, and system performance.
Journal Article

Frontal Crash Protection in Pre-1998 Vehicles versus 1998 and Later Vehicles

2010-04-12
2010-01-0142
This investigation addresses and evaluates: (1) belted drivers in frontal crashes; (2) crashes divided into low, medium, and high severity; (3) air-bag-equipped passenger vehicles separated into either model years 1985 - 1997 (with airbags) or model years 1998 - 2008; (4) rate of Harm as a function of crash severity and vehicle model year; and (5) injury patterns associated with injured body regions and the involved physical components, by vehicle model year. Comparisons are made between the injury patterns related to drivers seated in vehicles manufactured before 1998 and those manufactured 1998 or later. The purpose of this comparative analysis is to establish how driver injury patterns may have changed as a result of the introduction of more recent safety belt technology, advanced airbags, or structural changes.
Journal Article

Injury Risk Investigation of the Small, Rear-seat Occupant in Side Impact

2012-04-16
2012-01-0092
For children seated next to the struck side, real-world crash outcome was determined for the rear-seat of passenger vehicles over the entire range of side impact crash severities. The method was first to calculate the actual risk for an occupant based on field data. The data sources were non-rollover, tow-away crashes from the 1997 - 2009 National Automotive Sampling System. By limiting the struck passenger vehicle to model year 1985 or newer, field data were identified for a total of 588 children. In all crashes, the child was seated in the rear-seat area on the struck side of the passenger vehicle. A matrix of MADYMO model simulations calculated the response of child dummies over the entire range of the field data. Age-dependent, moderate-to-serious (AIS ≥ 2) injury risk curves were derived and evaluated for children in side impact. Risks to the children were calculated by combining the derived child risk curves with the MADYMO model simulations.
Journal Article

Ash Permeability Determination in the Diesel Particulate Filter from Ultra-High Resolution 3D X-Ray Imaging and Image-Based Direct Numerical Simulations

2017-03-28
2017-01-0927
Diesel engine exhaust aftertreatment components, especially the diesel particulate filter (DPF), are subject to various modes of degradation over their lifetimes. One particular adverse effect on the DPF is the significant rise in pressure drop due to the accumulation of engine lubricant-derived ash which coats the inlet channel walls effectively decreasing the permeability of the filter. The decreased permeability due to ash in the DPF can result in increased filter pressure drop and decreased fuel economy. A unique two-step approach, consisting of experimental measurements and direct numerical simulations using ultra-high resolution 3D imaging data, has been utilized in this study to better understand the effects of ash accumulation on engine aftertreatment component functionality.
Journal Article

Design Drivers of Energy-Efficient Transport Aircraft

2011-10-18
2011-01-2495
The fuel energy consumption of subsonic air transportation is examined. The focus is on identification and quantification of fundamental engineering design tradeoffs which drive the design of subsonic tube and wing transport aircraft. The sensitivities of energy efficiency to recent and forecast technology developments are also examined.
Technical Paper

Engine-Out “Dry” Particular Matter Emissions from SI Engines

1997-10-01
972890
The Engine-Out Particulate Matter (EOPM) was collected from a spark ignition engine operating in steady state using a heated quartz fiber filter. The samples were weighted to obtain an EOPMindex and were analyzed using Scanning Electron Microscopy. The EOP Mindex was not sensitive to the engine rpm and load. When the mixture is very rich (air equivalence ratio λ less than ∼ 0.7), the EOPM comprise mostly of soot particles from fuel combustion. In the lean to slightly rich region (0.8 < λ < 1.2), however, the EOPM are dominated by particles derived from the lubrication oil.
Technical Paper

Liquid Fuel Visualization Using Laser-Induced Fluoresence During Cold Start

1998-10-19
982466
The presence of liquid fuel inside the engine cylinder is believed to be a strong contributor to the high levels of hydrocarbon emissions from spark ignition (SI) engines during the warm-up period. Quantifying and determining the fate of the liquid fuel that enters the cylinder is the first step in understanding the process of emissions formation. This work uses planar laser induced fluorescence (PLIF) to visualize the liquid fuel present in the cylinder. The fluorescing compounds in indolene, and mixtures of iso-octane with dopants of different boiling points (acetone and 3-pentanone) were used to trace the behavior of different volatility components. Images were taken of three different planes through the engine intersecting the intake valve region. A closed valve fuel injection strategy was used, as this is the strategy most commonly used in practice. Background subtraction and masking were both performed to reduce the effect of any spurious fluorescence.
Technical Paper

A Collision Avoidance Steering Controller using Linear Quadratic Regulator

2010-04-12
2010-01-0459
Vehicle steering control can provide assistance to drivers for lane keeping, automated trajectory following, or more extreme evasive maneuvers. An active torque control steering system is designed using Linear Quadratic Regulator (LQR), and its performance was evaluated using the commercial software CARSIM. The system is developed to maintain a desired trajectory for the vehicle in performing evasive maneuvers to avoid imminent crash scenarios. In order to better understand the behavior of the system with different controllers, a simple bicycle model of the vehicle was developed, and an LQR controller was developed to control vehicle steering torque. The controller uses yaw angle, yaw rate, velocity, and position of the vehicle to generate the required steering torque to follow the desired trajectory. An observer was developed to estimate non-measured parameters. Trajectories are generated to follow a lane change before reaching the obstacle.
Technical Paper

Modeling Space Suit Mobility: Applications to Design and Operations

2001-07-09
2001-01-2162
Computer simulation of extravehicular activity (EVA) is increasingly being used in planning and training for EVA. A space suit model is an important, but often overlooked, component of an EVA simulation. Because of the inherent difficulties in collecting angle and torque data for space suit joints in realistic conditions, little data exists on the torques that a space suit’s wearer must provide in order to move in the space suit. A joint angle and torque database was compiled on the Extravehicular Maneuvering Unit (EMU), with a novel measurement technique that used both human test subjects and an instrumented robot. Using data collected in the experiment, a hysteresis modeling technique was used to predict EMU joint torques from joint angular positions. The hysteresis model was then applied to EVA operations by mapping out the reach and work envelopes for the EMU.
Technical Paper

Additional Findings on the Multi-Modal Demands of “Voice-Command” Interfaces

2016-04-05
2016-01-1428
This paper presents the results of a study of how people interacted with a production voice-command based interface while driving on public roadways. Tasks included phone contact calling, full address destination entry, and point-of-interest (POI) selection. Baseline driving and driving while engaging in multiple-levels of an auditory-vocal cognitive reference task and manual radio tuning were used as comparison points. Measures included self-reported workload, task performance, physiological arousal, glance behavior, and vehicle control for an analysis sample of 48 participants (gender balanced across ages 21-68). Task analysis and glance measures confirm earlier findings that voice-command interfaces do not always allow the driver to keep their hands on the wheel and eyes on the road, as some assume.
Technical Paper

A Framework for Robust Driver Gaze Classification

2016-04-05
2016-01-1426
The challenge of developing a robust, real-time driver gaze classification system is that it has to handle difficult edge cases that arise in real-world driving conditions: extreme lighting variations, eyeglass reflections, sunglasses and other occlusions. We propose a single-camera end-toend framework for classifying driver gaze into a discrete set of regions. This framework includes data collection, semi-automated annotation, offline classifier training, and an online real-time image processing pipeline that classifies the gaze region of the driver. We evaluate an implementation of each component on various subsets of a large onroad dataset. The key insight of our work is that robust driver gaze classification in real-world conditions is best approached by leveraging the power of supervised learning to generalize over the edge cases present in large annotated on-road datasets.
Technical Paper

Observed Differences in Lane Departure Warning Responses during Single-Task and Dual-Task Driving: A Secondary Analysis of Field Driving Data

2016-04-05
2016-01-1425
Advanced driver assistance systems (ADAS) are an increasingly common feature of modern vehicles. The influence of such systems on driver behavior, particularly in regards to the effects of intermittent warning systems, is sparsely studied to date. This paper examines dynamic changes in physiological and operational behavior during lane departure warnings (LDW) in two commercial automotive systems utilizing on-road data. Alerts from the systems, one using auditory and the other haptic LDWs, were monitored during highway driving conditions. LDW events were monitored during periods of single-task driving and dual-task driving. Dual-task periods consisted of the driver interacting with the vehicle’s factory infotainment system or a smartphone to perform secondary visual-manual (e.g., radio tuning, contact dialing, etc.) or auditory-vocal (e.g. destination address entry, contact dialing, etc.) tasks.
Technical Paper

Foot and Ankle Injuries to Drivers in Between-Rail Crashes

2013-04-08
2013-01-1243
The research question investigated in this study is what are the key attributes of foot and ankle injury in the between-rail frontal crash? For the foot and ankle, what was the type of interior surface contacted and the type of resulting trauma? The method was to study with in-depth case reviews of NASS-CDS cases where a driver suffered an AIS=2 foot or ankle injury in between-rail crashes. Cases were limited to belted occupants in vehicles equipped with air bags. The reviews concentrated on coded and non-coded data, identifying especially those factors contributing to the injuries of the driver's foot/ankle. This study examines real-world crash data between the years 1997-2009 with a focus on frontal crashes involving 1997 and later model year vehicles. The raw data count for between-rail crashes was 732, corresponding to 227,305 weighted, tow-away crashes.
Technical Paper

Research Alliances, A Strategy for Progress

1995-09-01
952146
In today's business climate rapid access to, and implementation of, new technology is essential to enhance competitive advantage. In the past, universities have been used for research contracts, but to fully utilize the intellectual resources of education institutions, it is essential to approach these relationships from a new basis: alliance. Alliances permit both parties to become active participants and achieve mutually beneficial goals. This paper will examine the drivers and challenges for industrial -- university alliances from both the industrial and academic perspectives.
Technical Paper

Visualization of Mixture Preparation in a Port-Fuel Injection Engine During Engine Warm-up

1995-10-01
952481
The fuel injection process in the port of a firing 4-valve SI engine at part load and 25°C head temperature was observed by a high speed video camera. Fuel was injected when the valve was closed. The reverse blow-down flow when the intake valve opens has been identified as an important factor in the mixture preparation process because it not only alters the thermal environment of the intake port, but also strip-atomizes the liquid film at the vicinity of the intake valve and carries the droplets away from the engine. In a series of “fuel-on” experiments, the fuel injected in the current cycle was observed to influence the fuel delivery to the engine in the subsequent cycles.
Technical Paper

3D Vortex Simulation of Intake Flow in a Port-Cylinder with a Valve Seat and a Moving Piston

1996-05-01
961195
A Lagrangian random vortex-boundary element method has been developed for the simulation of unsteady incompressible flow inside three-dimensional domains with time-dependent boundaries, similar to IC engines. The solution method is entirely grid-free in the fluid domain and eliminates the difficult task of volumetric meshing of the complex engine geometry. Furthermore, due to the Lagrangian evaluation of the convective processes, numerical viscosity is virtually removed; thus permitting the direct simulation of flow at high Reynolds numbers. In this paper, a brief description of the numerical methodology is given, followed by an example of induction flow in an off-centered port-cylinder assembly with a harmonically driven piston and a valve seat situated directly below the port. The predicted flow is shown to resemble the flow visualization results of a laboratory experiment, despite the crude approximation used to represent the geometry.
Technical Paper

Heart Injuries Among Restrained Occupants in Frontal Crashes

1997-02-24
970392
The William Lehman Injury Research Center has conducted multi-disciplinary investigations of one hundred seventy-eight crashes involving adult occupants protected by safety belts and air bags. In all cases, serious injuries were suspected. Nine cases involved serious heart injuries. These cases are not representative of crashes in general. However, when used in conjunction with National Accident Sampling System; Crashworthiness Data System (NASS/CDS) they provide insight into the most severe injuries suffered by restrained occupants in frontal crashes. Heart injuries are rare, but when they occur they are usually life threatening. NASS/CDS shows that heart injuries comprise about 0.2% of the injuries in frontal tow-away crashes. In the NHTSA file of Special Crash Investigations (SCI) of air bag cases, heart injuries are reported in 1% of the occupants over 15 years of age. Twenty-five percent of the fatally injured occupants had heart injuries, and 83% of those with heart injury died.
Technical Paper

A Driver Behavior Recognition Method Based on a Driver Model Framework

2000-03-06
2000-01-0349
A method for detecting drivers' intentions is essential to facilitate operating mode transitions between driver and driver assistance systems. We propose a driver behavior recognition method using Hidden Markov Models (HMMs) to characterize and detect driving maneuvers and place it in the framework of a cognitive model of human behavior. HMM-based steering behavior models for emergency and normal lane changes as well as for lane keeping were developed using a moving base driving simulator. Analysis of these models after training and recognition tests showed that driver behavior modeling and recognition of different types of lane changes is possible using HMMs.
Technical Paper

Design of Manufacturing Systems to Support Volume Flexibility

1999-05-10
1999-01-1621
This paper presents an Axiomatic Design framework for manufacturing system design and illustrates how lean cellular manufacturing can achieve volume flexibility. Axiomatic Design creates a design framework by mapping the functional requirements of a system to specific design parameters. Volume flexibility is often neglected as a requirement of manufacturing systems. Very few industries are fortunate enough to experience stable or predictable product demand. In reality, demand is often volatile and uncertain. It is important that manufacturing system designers are aware of manufacturing system types which can accommodate volume flexibility and follow a structured design methodology that assures that all requirements are met by the system.
X