Refine Your Search

Topic

Author

Search Results

Journal Article

Experimental Investigation of the Mechanical Behavior of Aluminum Adhesive Joints under Mixed-Mode Loading Conditions

2018-04-03
2018-01-0105
In recent years, structural adhesives have rapidly become the preferred alternative to resistance spot welding in fabricating stronger, lighter aluminum connections. Connections inevitably undergo and must withstand complex quasi-static and/or dynamic loads during their service life. Therefore, understanding how loading conditions affect the mechanical behavior of adhesive joints is vital to their design and the advancement of structural safety. Quasi-static and dynamic tests are performed to analyze both the strength and failure modes of aluminum 6062 substrates bonded by an adhesive (Darbond EP-1506) for an array of loading directions. An Arcan test device, which enables application of mixed-mode loads ranging from pure peel (mode I) to pure shear (mode II) to the adhesive layer, is employed in quasi-static testing. A self-designed medium-speed test machine is utilized to perform dynamic testing.
Journal Article

On-Board Particulate Filter Failure Prevention and Failure Diagnostics Using Radio Frequency Sensing

2017-03-28
2017-01-0950
The increasing use of diesel and gasoline particulate filters requires advanced on-board diagnostics (OBD) to prevent and detect filter failures and malfunctions. Early detection of upstream (engine-out) malfunctions is paramount to preventing irreversible damage to downstream aftertreatment system components. Such early detection can mitigate the failure of the particulate filter resulting in the escape of emissions exceeding permissible limits and extend the component life. However, despite best efforts at early detection and filter failure prevention, the OBD system must also be able to detect filter failures when they occur. In this study, radio frequency (RF) sensors were used to directly monitor the particulate filter state of health for both gasoline particulate filter (GPF) and diesel particulate filter (DPF) applications.
Technical Paper

Impact of EV Charging on Power System with High Penetration of EVs: Simulation and Quantitative Analysis Based on Real World Usage Data

2020-04-14
2020-01-0531
The adoption of electric vehicles (EVs) has been announced worldwide with the aim of reducing CO2 emissions. However, a significant increase in electricity demand by EVs might impact the stable operation of the existing power grid. Meanwhile, EV charging is acceptable to most users if it is completed by the time of the next driving event. From the viewpoint of power grid operators, flexibility for shifting the timing of EV charging would be advantageous, including making effective use of renewable energy. In this work, an EV model and simulation tool were developed to make clear how the total charging demand of all EVs in use will be influenced by future EV specifications (e.g., charge power) and installation of charging infrastructure. Among the most influential factors, EV charging behavior according to use cases and regional characteristics were statistically analyzed based on the real-world usage data of over 14, 000 EVs and incorporated in the simulation tool.
Technical Paper

An Experiment and Simulation Study on Failure of High Voltage Cables under Indentation

2020-04-14
2020-01-0199
Failure of high voltage cables (HVCs) which sometimes occurs in electric vehicle collision is one of the fuses that leads to severe thermal runaway of the traction battery system, which has not gotten thorough investigations. This paper presents an experiment and simulation study on the failure behaviors of HVCs under indentation loadings. Tests were performed with different combinations of indenter (cylinder indenter with a diameter of 5 mm which was labeled as D5, cylinder indenter with a diameter of 15 mm which was labeled as D15 and wedge indenter with an angle of 60° which was labeled as V60) and loading speed (1.5 mm/min for quasi-static and 2m/s for dynamic). Experimental results indicated that the failure behavior of HVCs was both influenced by the indenter shape and loading speeds. Sharp indenter will led to a component failure sequence from outmost to innermost.
Technical Paper

Fault-Tolerant Control of Regenerative Braking System on In-Wheel Motors Driven Electric Vehicles

2020-04-14
2020-01-0994
A novel fault tolerant brake strategy for In-wheel motor driven electric vehicles based on integral sliding mode control and optimal online allocation is proposed in this paper. The braking force distribution and redistribution, which is achieved in online control allocation segment, aim at maximizing energy efficiency of the vehicle and isolating faulty actuators simultaneously. The In-wheel motor can generate both driving torque and braking torque according to different vehicle dynamic demands. In braking procedure, In-wheel motors generate electric braking torque to achieve energy regeneration. The strategy is designed to make sure that the stability of vehicle can be guaranteed which means vehicle can follow desired trajectory even if one of the driven motor has functional failure.
Technical Paper

Analysis of Thermal Fatigue Resistance of Engine Exhaust Parts

1991-02-01
910430
The thermal fatigue resistance of engine exhaust system parts has conventionally been evaluated in thermal fatigue tests conducted with a restrained specimen. However, the test results have not always been consistent with data obtained in engine endurance tests. Two new evaluation methods have been developed to overcome this problem. One is a method of predicting thermal fatigue life on the basis of nonlinear elastic and plastic thermal analyses performed with a finite element model and the ABAQUS program. The other is a method of evaluating exhaust system parts using an exhaust system simulator. This paper describes the concepts underlying the two methods and their relative advantages.
Journal Article

High Speed Imaging Study on the Spray Characteristics of Dieseline at Elevated Temperatures and Back Pressures

2014-04-01
2014-01-1415
Dieseline combustion as a concept combines the advantages of gasoline and diesel by offline or online blending the two fuels. Dieseline has become an attractive new compression ignition combustion concept in recent years and furthermore an approach to a full-boiling-range fuel. High speed imaging with near-parallel backlit light was used to investigate the spray characteristics of dieseline and pure fuels with a common rail diesel injection system in a constant volume vessel. The results were acquired at different blend ratios, and at different temperatures and back pressures at an injection pressure of 100MPa. The penetrations and the evaporation states were compared with those of gasoline and diesel. The spray profile was analyzed in both area and shape with statistical methods. The effect of gasoline percentage on the evaporation in the fuel spray was evaluated.
Technical Paper

Comparison of Head Kinematics of Bicyclist in Car-to-Bicycle Impact

2020-04-14
2020-01-0932
This study focused on European NCAP activities of introducing a new head protection evaluation procedure, as proposed by BASt (Federal Highway Research Institute - GERMANY). Various kinds of E-bikes are available in the market, ranging from E-bikes that have a small motor to assist the rider’s pedal-power i.e., pedelecs to somewhat more powerful E-bikes which is similar to a moped-style scooter. This paper focused on identifying the factors influencing bicyclist head kinematics during bicycle vs. passenger vehicle (PV) collisions at the intersection. Two AM50 bicyclist FE models are developed using i) GHBMC Human Body Model (HBM) and ii) WorldSID (WS) side impact dummy. Head kinematics of bicyclists of pedal-assist E-bike and normal bike were compared using CAE simulation. It is found that the vehicle’s impact velocity, type of bicycle, the mass of E-bike and bicycle traveling speed will influence the head kinematics.
Technical Paper

Establishment of a Method for Predicting Cam Follower Wear in the Material Development Process

1990-10-01
902087
Many studies have been reported concerning fundamental tribological research aimed at reducing the severe valve train wear that occurs in internal combustion engines. In this paper, cam follower wear was theoretically and experimentally analyzed at the material development stage. Statistical methods have been applied to practical use in determining the material properties quantitatively. Based on the results, a method for predicting cam follower wear has been derived which has made it possible to develop new valve train systems more efficiently. Further, a guideline for developing new wear resistant materials was also clarified. Finally, the precision high chrominum cast iron rocker arm is described, along with its application to a new NISSAN high-performance 4-cylinder DOHC engine, as an example of the use of this method to develop new wear-resistant materials.
Technical Paper

Effective Numerical Simulation Tool for Real-World Rollover Accidents by Combining PC-Crash and FEA

2007-04-16
2007-01-1773
With SUVs and minivans accounting for a larger share of the US market in the past decade, rollover accidents have drawn greater attention, leading to more active research from different perspectives. This ranges from investigations for elucidating the basic causes and mechanisms of rollover accidents to studies of more advanced occupant protection measures. As the phenomenon of a rollover accident is longer in duration than frontal, side or rear impacts, it is relatively difficult [1] to simulate such accidents for experimental verification and also for proper evaluation of occupant restraint system performance. In this work, we focused on the trip-over type, which occurs most frequently, and performed simulations to reproduce real-world rollover accidents by combining PC-Crash and FEA.
Technical Paper

A Study of a Method for Predicting the Risk of Crossing-Collisions at Intersection

2008-04-14
2008-01-0524
The probability or risk of traffic accidents must be estimated quantitatively in order to implement effective traffic safety measures. In this study, various statistical data and probability theory were used to examine a method for predicting the risk of crossing-collisions, representing a typical type of accident at intersections in Japan. Crossing-collisions are caused by a variety of factors, including the road geometry and traffic environment at intersections and the awareness and intentions of the drivers of the striking and struck vehicles. Bayes' theorem was applied to find the accident probability of each factor separately. Specifically, the probability of various factors being present at the time of a crossing-collision was estimated on the basis of traffic accident data and observation survey data.
Technical Paper

FEM analysis on gap control mechanism in batting process of tailored blank sheets production

2003-10-27
2003-01-2770
Recently tailored blank sheets are widely and very often applied to car body's panels in order to reduce weight and number of automobile parts. The tailored blank sheets are produced by welding more than two metal sheets. The gap between edges of blank sheets before laser welding should be controlled for obtaining good quality tailored blank sheets. Therefore control of gap within 0.1mm between batting two blank sheets for production is one of main subjects for producing tailored blank sheets. This report presents not only a new mechanism on gap control but also a development of Finite Element Method (FEM) analysis for prediction of gap. The new mechanism has been applied successfully to produce good quality tailored blank sheets. The gap prediction simulation can reduce the time for gap control apparatus design.
Technical Paper

Development of Pedestrian Protection Analyzing Technologies and Its Applications

2003-10-27
2003-01-2807
This paper introduces a development of pedestrian protection analyzing technologies and its practical application to an actual automobile. The analyzing technologies have two types, an analyzing tool for initial design stage utilizing Microsoft Excel and a crash analyzing software MADYMO, and a large scale FEM (Finite Element Method) utilizing a crash analyzing software PAM-CRASH. These technologies were applied to an actual car development to study the efficient structure. In this paper, a development of a bumper structure with high leg protection performance is reported. The developed bumper was tested and evaluated on an actual vehicle and was proven to have high leg protection performance. The leg protection analyzing technology could estimate the leg injury of a actual vehicle test within 10% prediction error.
Technical Paper

A Study on the Cyclic Plastic Zone Size Method, ω*, for Digital Fatigue Life Prediction of Arc-Welded Joints

2003-10-27
2003-01-2835
Various prediction methods have been proposed for evaluating the fatigue life of welded joints by combining finite element analysis (FEA) with an experimental database. However, to obtain more universal and accurate fatigue life predictions, it is necessary to have criteria for making integrated evaluations of the fatigue strength of welded joints. This paper presents a study that focuses on the local cyclic plastic zone size (ω*) as the criterion of fatigue strength and investigates its validity. The definition of ω* was given by the relationship between the stress state at the notch tip and the elastic strain which was defined along the strain-life fatigue curve (ε - N diagram) of a base metal. As a result of using ω*, it was found that an integrated fatigue life prediction was possible to a certain extent for notch and arc-welded joint specimens.
Technical Paper

Work Hardening and Strength Analysis of Steel Structure with Special Cross Section

2002-07-09
2002-01-2114
This paper presents the results of a strength analysis of a newly developed steel structure featuring a special cross section achieved with the hydroforming process that minimizes the influence of springback. This structure has been developed in pursuit of further weight reductions for the steel body in white. A steel tube with tensile strength of 590 MPa was fabricated in a low-pressure hydroforming operation, resulting in thicker side walls. The results of a three-point bending test showed that the bending strength of the new steel structure with thicker side walls was substantially increased. A finite element crush analysis based on the results of a forming analysis was shown to be effective in predicting the strength of the structure, including the effect of work hardening.
Technical Paper

Application of Hydroforming Simulation on Development of Automobile Parts

2002-03-04
2002-01-0786
Hydrofrorming is an efficient forming process to produce automotive parts for reducing weight of cars. In order to reduce the period of development of hydrofoming parts, numerical simulation using FEM is applied to evaluate formability. A pipe needs to be bent before hydroforming for forming complicated shape parts. A pipe bending process is also necessary to FEM simulation. In this paper, a highly effective method to create a bent pipe FEM model based on geometrical changing between a pipe before and after bending is proposed. The widely used draw bending process is supposed to be applied. The method can construct the model in a short time. Therefore total computation time can be reduced drastically. The effects of number of integration points and elements to the computed results and springback prediction after bending are also investigated. The proposed method are applied to a actual part, the computed results are in good agreement with the experimental results.
Technical Paper

Dynamic Characteristic Analysis of a Hydraulic Engine Mount with Lumped Model Based on Finite Element Analysis

2003-05-05
2003-01-1462
Hydraulic Engine Mount (HEM) is now widely used as a highly effective vibration isolator in automotive powertrain. A lumped parameter model is a traditional model for modeling the dynamic characteristics of HEM, in which the system parameters are usually obtained by experiments. In this paper, Computational Fluid Dynamics (CFD) method and nonlinear Finite Element Analysis (FEA) are used to determine the system parameters. A Fluid Structure Interaction (FSI) FEA technique is used to estimate the parameters of volumetric compliances, equivalent piston area, inertia and resistance of the fluid in the inertia track and decoupler of a HEM. A nonlinear FEA method is applied to determine the dynamic stiffness of rubber spring of the HEM. The system parameters predicated by FEA are compared favorably with experimental data and/or analytical solutions.
Technical Paper

An Investigation of Steering Column Collapse Behavior Using Finite Element Analysis

1992-02-01
920391
For the purpose of protecting the driver from injury in a crash, a safety standard has been established that specifies the allowable impact force when the driver hits the steering wheel as a result of an impact. In this work, an investigation was lade of steering column collapse behavior in which the steering column was constructed such that the crash energy was absorbed by the bending and tearing of a thin steel plate. As a result, a finite element analysis method has been developed for conducting an impact analysis using a ductile fracture model of the thin plate. This method makes it possible to predict the collapse behavior of the steering column and the deceleration that develops on the body block of the safety standard test model.
Technical Paper

A Model Based Design Methodology for Variable Flux PMSMs to Obtain Desired Speed-Torque Characteristics

2016-04-05
2016-01-1233
Variable flux permanent magnet synchronous machines (VFPMSMs) have been designed by using finite element analysis (FEA) to evaluate speed-torque capability considering requirement for magnetization state (MS) manipulation. However, due to its unique characteristic to change the MS, numerous combinations of design parameters need to be evaluated to achieve a final design. To accelerate the design process, this paper presents a method that consists of an equivalent magnetic circuit model and a process to obtain magnet width and thickness that satisfy target maximum torque and power factor (P.F.) capability. This model includes magnet operating point analysis under given magnet width and thickness condition to achieve target MS and avoid demagnetization at full load. This analysis provides desired stator magnetomotive force, magnet and stator induced flux linkage. Therefore, expected torque and P.F. capability is calculated.
Technical Paper

The Anatomy of Knock

2016-04-05
2016-01-0704
The combustion process after auto-ignition is investigated. Depending on the non-uniformity of the end gas, auto-ignition could initiate a flame, produce pressure waves that excite the engine structure (acoustic knock), or result in detonation (normal or developing). For the “acoustic knock” mode, a knock intensity (KI) is defined as the pressure oscillation amplitude. The KI values over different cycles under a fixed operating condition are observed to have a log-normal distribution. When the operating condition is changed (over different values of λ, EGR, and spark timing), the mean (μ) of log (KI/GIMEP) decreases linearly with the correlation-based ignition delay calculated using the knock-point end gas condition of the mean cycle. The standard deviation σ of log(KI/GIMEP) is approximately a constant, at 0.63. The values of μ and σ thus allow a statistical description of knock from the deterministic calculation of the ignition delay using the mean cycle properties
X