Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

Keys to Understanding Spray-guided Combustion of a Narrow-spacing Gasoline Direct Injection SI Engine with a Centrally Mounted Multi-hole Injector

2009-04-20
2009-01-1497
Spray-guided gasoline direct injection SI engines attract as one of new generation lean-burn engines to promise CO2 reduction. These typically adopt “narrow-spacing” concept in which an injector is centrally mounted close to a spark plug. Therefore, geometric targets of the fuel spray and a position of the spark plug have to be exactly limited to maintain a proper mixture in the spark gap. In addition, the stable combustion window is narrow because the spark ignition is limited in a short time during and immediately after the injection. These spatial and temporal restrictions involve some intractable problems concerning the combustion robustness due to the complicate phenomena around the spark plug. The local mixture preparation near the spark plug significantly depends on the spray-induced charge motion. The intense flow induced by the motion blows out and stretches the spark, thereby affecting the spark discharge performance.
Journal Article

Unregulated Harmful Substances in Exhaust Gas from Diesel Engines

2009-06-15
2009-01-1870
The volatile organic compounds (VOC) from diesel engines, including formaldehyde and benzene, are concerned and remain as unregulated harmful substances. The substances are positively correlated with THC emissions, but the VOC and aldehyde compounds at light load or idling conditions are more significant than THC. When coolant temperatures are low at light loads, there are notable increases in formaldehyde and acetaldehyde, and with lower coolant temperatures the increase in aldehydes is more significant than the increase in THC. When using ultra high EGR so that the intake oxygen content decreases below 10%, formaldehyde, acetaldehyde, benzene, and 1,3-butadiene increase significantly while smokeless and ultra low Nox combustion is possible.
Journal Article

A Study of Reliability Evaluation of Main Bearings for Multicylinder Diesel Engines

2016-04-05
2016-01-0494
In recent years, although experiment technologies on real engines and simulation technologies has been improved rapidly, the tribology contributing factors have not been quantitatively well evaluated to reveal critical lubrication failure mechanisms. In this study the oil film thickness of the main bearings in multicylinder diesel engines was measured, and the data was analyzed using response surface methodology, which is a statistical analysis methods used to quantitatively derive the factors affecting oil film thickness and the extent of their contribution. We found that the factor with the strongest effect on minimum oil film thickness is oil pressure. Lastly, as a verification test, bearing wear on the main bearings was compared under various oil pressure conditions. Clear differences in bearing wear were identified.
Technical Paper

Numerical Investigation of Near Nozzle Flash-Boiling Spray in an Axial-Hole Transparent Nozzle

2020-04-14
2020-01-0828
Understanding and prediction of flash-boiling spray behavior in gasoline direct-injection (GDI) engines remains a challenge. In this study, computational fluid dynamics (CFD) simulations using the homogeneous relaxation model (HRM) for not only internal nozzle flow but also external spray were evaluated using CONVERGE software and compared to experimental data. High-speed extinction imaging experiments were carried out in a real-size axial-hole transparent nozzle installed at the tip of machined GDI injector fueled with n-pentane under various ambient pressure conditions (Pa/Ps = 0.07 - 1.39). The width of the spray during injection was assessed by means of projected liquid volume, but the structure and timing for boil-off of liquid within the sac of the injector were also assessed after the end of injection, including cases with different designed sac volumes.
Technical Paper

Transient Internal Nozzle Flow in Transparent Multi-Hole Diesel Injector

2020-04-14
2020-01-0830
An accurate prediction of internal nozzle flow in fuel injector offers the potential to improve predictions of spray computational fluid dynamics (CFD) in an engine, providing a coupled internal-external calculation or by defining better rate of injection (ROI) profile and spray angle information for Lagrangian parcel computations. Previous research has addressed experiments and computations in transparent nozzles, but less is known about realistic multi-hole diesel injectors compared to single axial-hole fuel injectors. In this study, the transient injector opening and closing is characterized using a transparent multi-hole diesel injector, and compared to that of a single axial hole nozzle (ECN Spray D shape). A real-size five-hole acrylic transparent nozzle was mounted in a high-pressure, constant-flow chamber. Internal nozzle phenomena such as cavitation and gas exchange were visualized by high-speed long-distance microscopy.
Journal Article

Development of a Fuel Economy and Exhaust Emissions Test Method with HILS for Heavy-Duty HEVs

2008-04-14
2008-01-1318
The objective of this study was to develop a test method for heavy-duty HEVs using a hardware-in-the-loop simulator (HILS) to enhance the type-approval-test method. To achieve our objective, HILS systems for series and parallel HEVs were actually constructed to verify calculation accuracy. Comparison of calculated and measured data (vehicle speed, motor/generator power, rechargeable energy storage system power/voltage/current/state of charge, and fuel economy) revealed them to be in good agreement. Calculation error for fuel economy was less than 2%.
Journal Article

Diesel Engine Emissions and Performance Optimization for Neat GTL Fuel

2008-04-14
2008-01-1405
The emissions reduction potential of neat GTL (Gas to Liquids: Fischer-Tropsch synthetic gas-oil derived from natural gas) fuels has been preliminarily evaluated by three different latest-generation diesel engines with different displacements. In addition, differences in combustion phenomena between the GTL fuels and baseline diesel fuel have been observed by means of a single cylinder engine with optical access. From these findings, one of the engines has been modified to improve both exhaust emissions and fuel consumption simultaneously, assuming the use of neat GTL fuels. The conversion efficiency of the NOx (oxides of nitrogen) reduction catalyst has also been improved.
Technical Paper

Electronically Controlled Mechanical Automatic Transmission for Heavy Duty Trucks and Buses

1986-10-20
861050
Hino Motors had developed an electronically controlled mechanical automatic transmission and employed it for the ′85 models of large size buses, and also ′86 models of heavy/ medium duty trucks. This system gives minimum fuel consumption and even smoother/easier driving than an automatic transmission with torque converter, by controlling an engine also with a transmission and employing an oil spray clutch. The trade name of this system is EE-Drive which means easy and economy drive.
Technical Paper

Measurement of Structural Attenuation of a Diesel Engine and its Applications for Reduction of Noise and Vibration

1991-11-01
912710
Structural attenuation of a running diesel engine measured by a new technique showed a constant value regardless of engine speeds. It was verified by this result that structural attenuation is a physical quantity unique to the structure of each engine and, therefore, a good indicator for evaluation of low noise engine structure. In addition, a hydraulic excitation test rig was devised to measure structural attenuation directly and to make effective use of it for noise reduction. Based on the accurate measurements by the excitation test rig, modal analysis and system simulation were conducted for implementation of countermeasures against noise.
Technical Paper

The Influence of Tire Deformation on Ride Comfort of a Truck

1990-10-01
902268
When truck tires have a deformation such as radial runout, flat spot, and abnormal wear as a result of panic braking, they affect vehicle vibration in the form of displacement input whose spectrum involves higher order terms of tire revolution. While a truck has vibration modes of frame bending as well as pitching and unsprung-mass viberation in the input frequency range, the tire displacement input induces vehicle vibration as a combination of these modes. Results of calculations and experiments of a 4x2 medium-duty truck are analyzed and an example of means for improving ride comfort is described in this paper.
Technical Paper

Development of Diesel Particulate Trap Systems for City Buses

1991-02-01
910138
Diesel particulate trap systems are one of the effective means for the control of particulate emission from diesel vehicles. Hino has been researching and developing various diesel particulate trap systems for city buses. This paper describes two of the systems. One uses a wall flow filter equipped with an electric heater and a sensing device for particulate loading for the purpose of filter regeneration. Another makes use of a special filter named “Cross Flow Filter” with an epoch-making regeneration method called “Reverse Jet Cleaning”, by which it becomes possible to separate the part for particulate burning from the filter. Both systems roughly have come to satisfy the functions of trap systems for city buses, but their durability and reliability for city buses are not yet sufficient.
Technical Paper

Fuel Injection Control Systems that Improve Three Way Catalyst Conversion Efficiency

1991-02-01
910390
A fuel control method to reduce the harmful exhaust gas from SI engines is proposed. As is well known, both the amplitude and the frequency of the limit cycle in a conventional air-fuel ratio control system are determined uniquely by parameters in the system. And this limits our making full use of the oxygen storage effect of TWC. A simple model of TWC reaction revealed the relationship between maximum conversion efficiency and both the amplitude and the frequency in a air fuel control system. It also revealed that TWC conversion efficiency attained to maximum levels when both the amplitude and the frequency of the limit cycle are selected so as to make full use of the oxygen storage effect of TWC. In order to achieve this, it is necessary to vary both the amplitude and the frequency arbitrarily.
Technical Paper

Development of Mitsubishi Flexible Fuel Vehicle

1991-02-01
910861
A flexible fuel vehicle (FFV) was evaluated through various tests for its potential as an alternative to the conventional gasoline vehicle. This paper presents the systems incorporated in the FFV and the test results. 50,000 mile emission durability tests were also performed and the potential of the FFV as a “Low Emission Vehicle” was assessed. As the result of extensive engineering work, we successfully developed a Galant FFV which exhibits very good durability and reliability. The emission control system which we have developed demonstrated that the vehicle has a good potential to comply with the California formaldehyde emission standard of 15 mg/mile. However, due to the large portion of unburnt methanol in the tail-pipe emissions, FFVs will have more difficulty than gasoline vehicles in meeting non-methane organic gas (NMOG) standards applicable to “Low Emission Vehicles”.
Technical Paper

The Development of High-Performance Viscous-Rubber Damper for Higher Boost Turbocharged and Charge-Cooled Diesel Engine

1991-02-01
910630
A newly developed viscous-rubber damper, which employed an innovative structure and a new heat resistant rubber, solved some tough problems. This paper dealt more closely with the features of the new viscous-rubber damper and the new calculation method for the viscous-rubber damper. This damper has been employed for Hino new K13C (K-II) higher boost turbocharged and air to air charge-cooled diesel engine, which has extreme severity on the torsional vibration.
Technical Paper

A New Approach to Vehicle Interior Control

1991-02-01
910472
In order to meet increasing demands for safety and comfort in a vehicle compartment, automatic adjustment of seat, mirrors, steering wheel has been developed. The multiplex wiring system was constructed for the automatic adjustment of the cockpit elements to drivers preferred positions or to physique-matched settings based on ergonomic data. This paper describes the construction of the multiplex system and functions of automatic adjustment of the cockpit elements for comfortable driving position and better visibility.
Technical Paper

Reduction of Idling Rattle Noise in Trucks

1991-05-01
911044
Optimization of the clutch torsional characteristics is one of the effective methods to reduce the idling rattle noise. Many researches on th.s problem have been reported, but only few of them give sufficient consideration to the drag torque applied to the clutch disc during engine idling. This paper pays attention to the drag torque and discusses the mechanism of idling rattle noise by using vehicle testing, bench test with rotating torsional exciter and computer simulation. Reauction of Idling
Technical Paper

Passenger Car Engines for the 21st Century

1991-09-01
911908
During next decade, automotive engineers will take up unprecedented challenges to meet a variety of technical demands on passenger cars. While performance, refinement and reliability will continue to be major technical goals of passenger cars, reducing their impact on the environment not only in urban areas but also on the global basis will become an increasingly urgent issue. In addition, the need for energy and resources saving will necessitate development of more fuel efficient cars, exploitation of alternative energy and recycled materials. In this paper, the authors will review various alternative engines as candidates to satisfy the above demands. The authors will also discuss various alternative transportation energy sources such as alcoholic fuels, natural gas, hydrogen and electricity. Finally the trends of future passenger car engine design will be discussed.
Technical Paper

Development of Titanium Alloy Valve Spring Retainers

1991-02-01
910428
Beta Ti alloy valve spring retainers are newly developed for use in mass produced automobiles for the first time. Ti alloy valve spring retainers vith a weight saving of 42%, compared to steel retainers, have reduced the inertial weight of the valve train components by 6%. And this weight reduction has the benefit of increasing the upper limit of the engine speed, which improves the engine performance. Ti alloy valve spring retainers are cold forged by the conventional fabrication facilities for steel retainers, using Ti-22V-4Al (the beta Ti alloy) which possesses excellent cold workability in a solution treated condition. Oxygen surface hardening is applied to protect Ti alloy valve spring retainers from wear damage. In addition, aging treatment and shot blasting are performed to improve strength and stiffness of valve retainers.
Journal Article

Effect of Fischer-Tropsch Diesel on Fuel Supply System

2011-08-30
2011-01-1950
This paper investigates the effects of Fischer-Tropsch Diesel (FTD) (a completely a paraffinic fuel) on the fuel supply system in automotive applications. In particular, the effects of Gas to Liquid (GTL) (an FTD synthesized from natural gas) on the elastomer components has been investigated by laboratory scale tests and field trials. In the field trials, GTL was supplied to a commercial vehicle operator and the effect of real running conditions was observed. Also, the laboratory scale testing to simulate the actual condition of usage of a commercial vehicle was conducted under stringent conditions, and a correlation with the field trials was investigated. As a result, no negative effects related to GTL were found.
Journal Article

Study of the Impact of High Biodiesel Blends on Engine Oil Performance

2011-08-30
2011-01-1930
In Biodiesel Fuel Research Working Group(WG) of Japan Auto-Oil Program(JATOP), some impacts of high biodiesel blends have been investigated from the viewpoints of fuel properties, stability, emissions, exhaust aftertreatment systems, cold driveability, mixing in engine oils, durability/reliability and so on. This report is designed to determine how high biodiesel blends affect oil quality through testing on 2005 regulations engines with DPFs. When blends of 10-20% rapeseed methyl ester (RME) with diesel fuel are employed with 10W-30 engine oil, the oil change interval is reduced to about a half due to a drop in oil pressure. The oil pressure drop occurs because of the reduced kinematic viscosity of engine oil, which resulting from dilution of poorly evaporated RME with engine oil and its accumulation, however, leading to increased wear of piston top rings and cylinder liners.
X