Refine Your Search

Topic

Author

Search Results

Technical Paper

Studies of Diesel Particulate Filter Performances by a Diesel Engine Simulator

2010-04-12
2010-01-0813
To evaluate various Diesel Particulate Filter (DPF) efficiently, accelerated tests are one of effective methods. In this study, a simulator composed by diesel fuel burners is proposed for fundamental DPF evaluations. Firstly particle size distribution measurement, chemical composition and thermal analysis were carried out for the particulate matter (PM) generated by the simulator with several combustion conditions. The PMs generated by specific conditions showed similar characteristics to PMs of a diesel engine. Through these investigations, mechanism of PM particle growth was discussed. Secondly diversified DPFs were subjected to accelerated pressure drop and filtration efficiency tests. Features of DPFs could be clarified by the accelerated tests. In addition, the correlation between DPF pressure drop performance and PM characteristics was discussed. Thirdly regeneration performance of the simulator's PM was investigated.
Technical Paper

Performance Verification of Next Generation Diesel Particulate Filter

2010-04-12
2010-01-0531
The Inlet-Membrane DPF which has a small pore size membrane formed on the inlet side of the body wall has been developed as a next generation diesel particulate filter (DPF). It simultaneously realizes low pressure drop, small pressure drop hysteresis, high robustness and high filtration efficiency. The low pressure drop improves fuel economy. The small pressure drop hysteresis has the potential to extend the regeneration interval since the linear relationship between the pressure drop and accumulated soot mass improves the accuracy of the soot mass detection by means of the pressure drop values. The Inlet-Membrane DPF's high robustness also extends the regeneration interval resulting in improved fuel economy and a lower risk of oil dilution while its high filtration efficiency reduces PM emissions. The concept of the Inlet-Membrane DPF was confirmed using disc type filters in 2008 and its performances was evaluated using full block samples in 2009.
Technical Paper

Reaction and Diffusion Phenomena in Catalyzed Diesel Particulate Filters

2004-03-08
2004-01-0696
The objective of this study is to explain the physical and chemical mechanisms involved in the operation of a catalyzed diesel particulate filter. The study emphasizes on the coupling between reaction and diffusion phenomena (with emphasis on NO2 “back-diffusion”), based on modeling and experimental data obtained on the engine dynamometer. The study is facilitated by a novel multi-dimensional mathematical model able to predict both reaction and diffusion phenomena in the filter channels and through the soot layer and wall. The model is thus able to predict the species concentration gradients in the inlet/outlet channels, in the soot layer and wall, taking into account the effect of NO2 back diffusion. The model is validated versus engine dyno measurements. Two sets of measurements are employed corresponding to low-temperature “controlled” regenerations as well as high-temperature “uncontrolled” conditions.
Technical Paper

Feasibility Study of Two-stage Hybrid Combustion in Gasoline Direct Injection Engines

2002-03-04
2002-01-0113
Two-stage hybrid combustion for a 6-stroke gasoline direct injection SI engine is a new strategy to control the ignition of the HCCI combustion using hot-burned gas from the stratified lean SI combustion. This combustion is achieved by changing the camshafts, the cam-driven gear ratio and the engine control of a conventional 4-stroke gasoline direct injection engine without using a higher compression ratio, any fuel additives and induction air heating devices. The combustion processes are performed twice in one cycle. After the gas exchange process, the stratified ultra-lean SI combustion is performed. The hot-burned gas generated from this SI combustion is used as a trigger for the next HCCI combustion. After gasoline is injected in the burned gas, the hot and homogeneous lean mixture is recompressed without opening the exhaust valves. Thus the HCCI combustion occurs.
Technical Paper

Visualization of Combustion Phenomena in Regeneration of Diesel Particulate Filter

2003-03-03
2003-01-0836
Combustion phenomena in the regeneration of a diesel particulate filter (DPF) were clarified through a visualization experiment, using a half-cylindrical wall-flow DPF covered by a quartz glass plate. At a constant oxygen concentration (8.5% and 10% in the current study) of a working gas used for regeneration, in the cases of large particulate masses and high working gas temperatures, the particulate matter trapped on the filter surface is burned in a narrow reaction zone which can be observed as a high brightness zone moving slowly toward the downstream side. Just after the reaction zone passes, a sharp temperature peak is detected and there remains no particulate matter on the filter surface. Furthermore, the particulate matter is ignited first around the middle of the DPF, and then, the reaction zone propagates toward both the upstream and the downstream sides.
Technical Paper

A Particulate Trap System Using Electric Heating Regeneration for Small Trucks

1992-02-01
920141
A trap system has been developed that collects particulate using two small filters and regenerates alternately by electric heaters. This system contains a new idea in detection of the amount of particulate accumulation in the filters. The system counts the amount using a particulate accumulation rate map which is a function of the engine load and speed. In vehicle test with this trap system, the particulate collection efficiency and the regeneration efficiency were proved to be high enough for practical use. The test results also showed that the shutdown performance of the route switch valve greatly influenced the regeneration efficiency.
Technical Paper

Evaluation of Hydrothermally Aged Vanadia SCR on High-Porosity Substrate

2016-10-17
2016-01-2320
Ammonia Selective Catalytic Reduction (SCR) is adapted for a variety of applications to control nitrogen oxides (NOx) in diesel engine exhaust. The most commonly used catalyst for SCR in established markets is Cu-Zeolite (CuZ) due to excellent NOx conversion and thermal durability. However, most applications in emerging markets and certain applications in established markets utilize vanadia SCR. The operating temperature is typically maintained below 550°C to avoid vanadium sublimation due to active regeneration of the diesel particulate filter (DPF), or some OEMs may eliminate the DPF because they can achieve particulate matter (PM) standard with engine tuning. Further improvement of vanadia SCR durability and NOx conversion at low exhaust gas temperatures will be required in consideration of future emission standards.
Technical Paper

High-Porosity Cordierite Honeycomb Substrate Design Parameter Study in Combination with Vanadia SCR

2016-04-05
2016-01-0949
Ammonia Selective Catalytic Reduction (SCR) is a key emission control component utilized in diesel engine applications for NOx reduction. There are several types of SCR catalyst currently in the market: Cu-Zeolite, Fe-Zeolite and Vanadia. Diesel vehicle and engine manufacturers down select their production SCR catalyst primarily based on vehicle exhaust gas temperature operation, ammonia dosing strategy, fuel quality, packaging envelope and cost. For Vanadia SCR, the operating temperature is normally controlled below 550oC to avoid vanadium sublimation. In emerging markets, the Vanadia SCR is typically installed alone or downstream of the DOC with low exhaust gas temperature exposure. Vanadia SCR is also utilized in some European applications with passive DPF soot regeneration. However, further improvement of Vanadia SCR NOx conversion at low exhaust gas temperatures will be required to meet future emission regulations (i.e.: HDD Phase 2 GHG).
Technical Paper

Evaluation of Advanced Diesel Oxidation Catalyst Concepts: Part 2

2006-04-03
2006-01-0032
The development of diesel powered passenger cars is driven by the enhanced emission legislation. To fulfill the future emission limits there is a need for advanced aftertreatment devices. A comprehensive study was carried out focusing on the improvement of the DOC as one part of these systems, concerning high HC/CO conversion rates, low temperature light-off behaviour and high temperature aging stability, respectively. The first part of this study was published in [1]. Further evaluations using a high temperature DPF aging were carried out for the introduced systems. Again the substrate geometry and the catalytic coating were varied. The results from engine as well as vehicle tests show advantages in a highly systematic context by changing either geometrical or chemical factors. These results enable further improvement for the design of the exhaust system to pass the demanding emission legislation for high performance diesel powered passenger cars.
Technical Paper

Development of the Stainless Cast-Steel Exhaust Manifold

1993-03-01
930621
At Mitsubishi Motors, a thin-walled exhaust manifold, made of stainless cast-steel, has been developed with the aim of achieving higher heat-resisting reliability as well as weight reduction. The new exhaust manifold is made of ferritic stainless cast-steel, employing an advanced vacuum casting (CLAS). Its geometry was designed using finite element analysis and its durability was confirmed by testing both on various test devices and on a vehicle. The exhaust manifolds has been adopted on a production engine model and has proven the following advantages over a conventional cast-iron ones; excellent heat resistance. weight reduction of over 20%. possible exhaust emission reduction as a result of lower heat-capacity of the exhaust manifold.
Technical Paper

A Diesel Oxidation Catalyst for Exhaust Emissions Reduction

1993-11-01
932958
The authors used a mass spectrometer to determine an SOF reduction mechanism of a diesel oxidation catalyst. The results indicate that SOF reduction lies in the catalytic conversion of high molecular organic matter to low molecular organic matter. And unregulated emissions are also reduced through this conversion. It is also found that the SOF reduction performance is highly dependent up on the condition of the wash coat. There is some limitation to improving diesel oxidation catalyst performance because of the sulfur content found in diesel fuel. Finally, the authors have determined what we think are the specifications of the presently best catalytic converter.
Technical Paper

Optimization of Catalytic Converter Location Achieved with a Curve Catalytic Honeycomb Substrate

1994-03-01
940743
A new type of catalytic converter has been developed for the coming TLEV (Transitional Low Emission Vehicle) standards. It is a “Front Curve Catalytic Converter (FCCC)” using a curved cordierite ceramic honeycomb substrate. During this development, an optimum location and volume of the front curve catalytic converter were determined from the view points of thermal deterioration of the catalyst and hydrocarbon conversion performance. Based on CAE (Computer Aided Engineering) analysis, the best curvature radius of the substrate was selected to minimize a pressure drop of the front curve catalytic converter. The emission conversion and light-off performances of the front curve catalytic converter were compared with a conventional straight design. A series of durability tests; hot vibration, engine dynamometer and vehicle fleet tests were also conducted to confirm the reliability of the new front curve catalytic converter.
Technical Paper

Development of PM Trap System for Urban Buses

1996-02-01
960470
In response to stringent particulate matter (PM) emission regulations worldwide, developments of diesel particulate filter (DPF) continue apace in addition to engine modification for PM reduction. Particularly with buses used in urban areas, reduction methods in black smoke emissions are being researched in addition to the efforts to satisfy the aforementioned PM regulations. The system described in this paper was developed for use mainly with buses in large urban concentrations. The system described in this paper mainly consists of both wall-flow monolith filters for filtration of PM emissions and electric heaters for regeneration. A key feature of this system is that exhaust gas is used for effective combustion of PM during regeneration. With conventional systems, airpumps have been used to feed air for PM combustion during regeneration. With the new system, however, the use of an air pump was discontinued due to durability and cost considerations.
Technical Paper

EGR Technologies for a Turbocharged and Intercooled Heavy-Duty Diesel Engine

1997-02-24
970340
In this study three EGR methods were applied to a 12 liter turbocharged and intercooled Dl diesel engine, and the exhaust emission and fuel consumption characteristics were compared. One method is the Low Pressure Route system, in which the EGR is taken from down stream of the turbine to the compressor entrance. The other two systems are variations of the High Pressure Route system, in which the EGR is taken from the exhaust manifold to the intake manifold. One of the two High Pressure Route EGR systems is with back pressure valve located at downstream of the turbine and the other uses a variable geometry(VG) turbocharger. It was found that the High Pressure Route EGR system using VG turbocharger was the most effective and practical. With this method the EGR area could be enlarged and NOx reduced by 22% without increase in smoke or fuel consumption while maintaining an adequate excess air ratio.
Technical Paper

Development of a New Combustion System (MCA-JET) in Gasoline Engine

1978-02-01
780007
A new combustion system - called MCA-JET- has been developed to improve combustion under the low speed, low load conditions typical of urban driving. Engines with this new system incorporate a special “jet valve”, in addition to the inlet and exhaust valves of the conventional combustion chamber, which directs air or a super-lean mixture towards the spark plug, and induces a strong swirling flow in the cylinder. This swirl persists during the compression and expansion processes, moves the mixture spirally and helps the flame to propagate. As a result, the combustion of lean mixtures, including those with exhaust gas recirculation, can be carried out rapidly and thus the fuel economy improved.
Technical Paper

Small Engine - Concept Emission Vehicles

1971-02-01
710296
Three Japanese automobile manufacturers-Mitsubishi Motors Corp., Nissan Motor Co., Ltd., and Toyo Kogyo Co., Ltd.-have been making efforts over the past three years to design and develop effective thermal reactor-exhaust gas recirculation and catalytic converter systems suitable for small engines. The work is being done by members participating in the IIEC (Inter-Industry Emission Control) Program, and the exhaust emission levels of the concept vehicles developed by these companies have met the goal established by the IIEC Program at low mileage. Each system, however, has a characteristic relationship between exhaust emission level and loss of fuel economy. Much investigation is required, particularly with respect to durability, before any system that will fully satisfy all service requirements can be completed. This paper reports the progress of research and development of the individual concept vehicles.
Technical Paper

Development of Diesel Particulate Trap Oxidizer System

1986-03-01
860294
A particulate trap oxidizer system to reduce diesel particulate emissions has been developed. This system consists of a ceramic foam filter with an optimum volume, shape, and mesh number in terms of collection efficiency, pressure loss and particulate blow-off; a catalyst with a low activated-temperature for particulate incineration and with no sulfate formation during highway driving; and a regeneration system which prevents particulate overcollection during long-term continuous low-load/low-speed driving where it is difficult to achieve self-burning of particulates with a catalytic reaction. This paper describes the development of the particulate trap oxidizer system with these technologies and presents the results of practicability evaluations and 50,000-mile vehicle durability tests.
Technical Paper

Combustion Modes of Light Duty Diesel Particulates in Ceramic Filters with Fuel Additives

1986-03-01
860292
Auto-regeneration of diesel particulate traps, particularly combustion mode of soot in a wall flow filter with fuel additives, was investigated using a diesel engine of a light duty truck and truck itself. Soot burning in the trap and regeneration were observed under any engine operating condition including prolonged idling and stop-and-go driving at 0.18g metal/1 dosage of a mixture of copper and lead in the fuels. However, trap life was limited by ash clogging due to the metallic compounds. Although the influence of metallic additives on the environment was debatable, test results of the trap durability and calculations of soot burning based on the thermal ignition theory indicated that dosage and kind of fuel additives should be optimized in view of both trap life and reliability of soot burning.
Technical Paper

The Development of a BMW Catalyst Concept for LEV/EU3 Legislation for a 8 Cylinder Engine by Using Thin Wall Ceramic Substrates

1999-03-01
1999-01-0767
For the BMW V8 engine, a new LEV/EU3 emission concept has been developed by improvements to the previous engine management and secondary air supply and a complete new exhaust system. Beside the emission limits, also high engine output targets and high operating reliability were targeted. In addition the new exhaust system had to meet low cost targets. Based on these requirements an exhaust concept with separate pre catalyst and main catalyst was chosen. To reduce the heat mass and to optimize the pressure drop, 4.3mil/400cpsi thin wall ceramic substrates were used for the pre and main catalyst.
Technical Paper

High-Porosity Honeycomb Substrate with Thin-Wall and High Cell Density Using for SCR Coating to Meet Worldwide Tighter Emission Regulations

2022-03-29
2022-01-0550
Selective catalyst reduction (SCR) using cordierite honeycomb substrate is generally used as a DeNOx catalyst for diesel engines exhaust in both on-road and commercial off-highway vehicles to meet today’s worldwide emission regulations. Worldwide NOx emission regulations will become stricter, as represented by CARB2027 and EuroVII. Technologies which can achieve further lower NOx emissions are required. Recently, several technologies, like increased SCR catalyst loading amount on honeycomb substrates, and additional SCR catalyst volume in positions closer to the engine are being considered to achieve ultra-low NOx emissions. However, undesirable pressure drop increase and enlarging after treatment systems will be caused by adopting these technologies. Therefore, optimization of the material and honeycomb cell structure for SCR is inevitable to achieve ultra-low NOx emissions, while minimizing any system drawbacks.
X