Refine Your Search

Search Results

Viewing 1 to 6 of 6
Technical Paper

The Effect of a Longer Stroke on Improving Fuel Economy of a Multiple-Link VCR Engine

2007-10-29
2007-01-4004
Some automakers have been studying variable compression ratio (VCR) technology as one possible way of improving fuel economy. In previous studies, we have developed a VCR mechanism of a unique multiple-link configuration that achieves a piston stroke characterized by semi-sinusoidal oscillation and lower piston acceleration at top dead center than on conventional mechanisms. By controlling compression ratio with this multiple-link VCR mechanism so that it optimally matches any operating condition, the mechanism has demonstrated that both lower fuel consumption and higher output power are simultaneously possible. However, it has also been observed that fuel consumption does not reduce further once the compression ratio reached a certain level. This study focused on the fact that the piston-stroke characteristic obtained with the multiple-link mechanism is suitable to a longer stroke.
Technical Paper

Compact and Long-Stroke Multiple-Link VCR Engine Mechanism

2007-10-29
2007-01-3991
A multiple-link variable compression ratio (VCR) mechanism is suitable for a long-stroke engine by providing the following characteristics: (1) a nearly symmetric piston stroke and (2) an upper link that stays vertical around the time of the maximum combustion pressure. These two characteristics work to reduce force inputs to the piston. The maximum inertial force around top dead center is reduced by the effect of the first characteristic. The second characteristic is effective in reducing piston side thrust force and helps ease piston pin lubrication. Because of the combined effect of these characteristics, the piston skirt can be made smaller and the piston pin can be shortened. That makes it possible for the piston skirt and piston pin to move between the counterweights, resulting in a downward extension of the piston stroke. As a result, a longer-stroke engine mechanism can be achieved without making the cylinder block taller.
Technical Paper

HCCI Combustion on a Diesel VCR Engine

2008-04-14
2008-01-1187
A variable compression ratio (VCR) technology, that has a new piston-crankshaft mechanism with multi links, has been patented and developed by Nissan for some years (This technology has been detailed in previous SAE paper 2003-01-0921 and 2005-01-1134). This paper will present the use of this VCR technology for Diesel engine. The objective set with the use of VCR for Diesel engine is mainly to reduce as much as possible engine out emission to prepare for long-term, more strict emission standards. Results presented will include the description of the 2l Diesel VCR engine and its VCR mechanism adapted to Diesel constraints. Combustion tests have been performed with the use of HCCI (Homogeneous Charge Compression Ignition) combustion. This technology is still in a research phase in Renault: the adaptation of VCR technology to a Diesel engine consists in the modification of several parts with the addition of lower links, control links and control shaft.
Technical Paper

A Study on Engine Bearing Performance Focusing on the Viscosity-Pressure Characteristic of the Lubricant and Housing Stiffness

1996-05-01
961144
It is important to understand the influence of housing stiffness on bearing performance, particularly for the connecting rod bearings of automotive engines. It is known that the engine lubricant shows a piezoviscous characteristic whereby its viscosity changes under the influence of pressure. Engine bearings under a heavy load are apt to be influenced in this way. In this study, the effects of connecting rod stiffness and lubricant piezoviscosity on bearing performance were examined by elastohydrodynamic lubrication (EHL) analysis under conditions corresponding to the high-speed operation of an actual engine. The results indicated that under such heavy load conditions housing stiffness greatly affects friction loss because of lubricant piezoviscosity. It was also found that the piezoviscosity of the lubricant has a large effect on bearing performance, as does its viscosity under atmospheric pressure.
Technical Paper

Engine-Out and Tail-Pipe Emission Reduction Technologies of V-6 LEVs

1998-02-23
980674
Compared with in-line 4-cylinder engines, V-6 engines show a slower rise in exhaust gas temperature, requiring a longer time for catalysts to become active, and they also emit higher levels of engine-out emissions. In this study, The combination of a new type of catalyst, and optimized ignition timing and air-fuel ratio control achieved quicker catalyst light-off. Additionally, engine-out emissions were substantially reduced by using a swirl control valve to strengthen in-cylinder gas flow, adopting electronically controlled exhaust gas recirculation (EGR), and reducing the crevice volume by decreasing the top land height of the pistons. A vehicle incorporating these emission reduction technologies reduced the emission level through the first phase of the Federal Test Procedure (FTP) by 60-70% compared with the Tier 1 vehicle.
Technical Paper

Development of a New 2L Gasoline VC-Turbo Engine with the World’s First Variable Compression Ratio Technology

2018-04-03
2018-01-0371
A new 2L gasoline turbo engine, named KR20DDET was developed with the world’s first mass-producible variable compression turbo (VC-Turbo) technology using a multi-link variable compression ratio (VCR) mechanism. It is well known that increasing the compression ratio improves gasoline engine thermal efficiency. However, there has always been a compromise for engine designers because of the trade-off between increasing the compression ratio and knocking. At Nissan we have been working on VCR technology for more than 20 years and have now successfully applied this technology to a mass production engine. This technology uses a multi-link mechanism to change the top and bottom dead center positions, thereby allowing the compression ratio to be continuously changed. The VC-Turbo engine with this technology can vary the compression ratio from 14:1 for obtaining high thermal efficiency to 8:1 for delivering high torque by taking advantage of the strong synergy with turbocharging.
X