Refine Your Search

Topic

Author

Search Results

Technical Paper

An Engine Parameters Sensitivity Analysis on Ducted Fuel Injection in Constant-Volume Vessel Using Numerical Modeling

2021-09-05
2021-24-0015
The use of Ducted Fuel Injection (DFI) for attenuating soot formation throughout mixing-controlled diesel combustion has been demonstrated impressively effective both experimentally and numerically. However, the last research studies have highlighted the need for tailored engine calibration and duct geometry optimization for the full exploitation of the technology potential. Nevertheless, the research gap on the response of DFI combustion to the main engine operating parameters has still to be fully covered. Previous research analysis has been focused on numerical soot-targeted duct geometry optimization in constant-volume vessel conditions. Starting from the optimized duct design, the herein study aims to analyze the influence of several engine operating parameters (i.e. rail pressure, air density, oxygen concentration) on DFI combustion, having free spray results as a reference.
Technical Paper

A Methodology for Automotive Steel Wheel Life Assessment

2020-04-14
2020-01-1240
A methodology for an efficient failure prediction of automotive steel wheels during fatigue experimental tests is proposed. The strategy joins the CDTire simulative package effectiveness to a specific wheel finite element model in order to deeply monitor the stress distribution among the component to predict damage. The numerical model acts as a Software-in-the-loop and it is calibrated with experimental data. The developed tool, called VirtualWheel, can be applied for the optimisation of design reducing prototyping and experimental test costs in the development phase. In the first section, the failure criterion is selected. In the second one, the conversion of hardware test-rig into virtual model is described in detail by focusing on critical aspects of finite element modelling. In conclusion, failure prediction is compared with experimental test results.
Journal Article

Offline and Real-Time Optimization of EGR Rate and Injection Timing in Diesel Engines

2015-09-06
2015-24-2426
New methodologies have been developed to optimize EGR rate and injection timing in diesel engines, with the aim of minimizing fuel consumption (FC) and NOx engine-out emissions. The approach entails the application of a recently developed control-oriented engine model, which includes the simulation of the heat release rate, of the in-cylinder pressure and brake torque, as well as of the NOx emission levels. The engine model was coupled with a C-class vehicle model, in order to derive the engine speed and torque demand for several driving cycles, including the NEDC, FTP, AUDC, ARDC and AMDC. The optimization process was based on the minimization of a target function, which takes into account FC and NOx emission levels. The selected control variables of the problem are the injection timing of the main pulse and the position of the EGR valve, which have been considered as the most influential engine parameters on both fuel consumption and NOx emissions.
Journal Article

Active Tire Pressure Control (ATPC) for Passenger Cars: Design, Performance, and Analysis of the Potential Fuel Economy Improvement

2018-04-03
2018-01-1340
Active tire pressure control (ATPC) is an automatic central tire inflation system (CTIS), designed, prototyped, and tested at the Politecnico di Torino, which is aimed at improving the fuel consumption, safety, and drivability of passenger vehicles. The pneumatic layout of the system and the designed solution for on board integration are presented. The critical design choices are explained in detail and supported by experimental evidence. In particular, the results of experimental tests, including the characterizations of various pneumatic components in working conditions, have been exploited to obtain a design, which allows reliable performance of the system in a lightweight solution. The complete system has been tested to verify its dynamics, in terms of actuation time needed to obtain a desired pressure variation, starting from the current tire pressure, and to validate the design.
Journal Article

Numerical and Experimental Assessment of a Solenoid Common-Rail Injector Operation with Advanced Injection Strategies

2016-04-05
2016-01-0563
The selection and tuning of the Fuel Injection System (FIS) are among the most critical tasks for the automotive diesel engine design engineers. In fact, the injection strongly affects the combustion phenomena through which controlling a wide range of related issues such as pollutant emissions, combustion noise and fuel efficiency becomes feasible. In the scope of the engine design optimization, the simulation is an efficient tool in order to both predict the key performance parameters of the FIS, and to reduce the amount of experiments needed to reach the final product configuration. In this work a complete characterization of a solenoid ballistic injector for a Light-Duty Common Rail system was therefore implemented in a commercially available one-dimensional computational software called GT-SUITE. The main phenomena governing the injector operation were simulated by means of three sub-models (electro-magnetic, hydraulic and mechanical).
Journal Article

Experimental and Numerical Assessment of Multi-Event Injection Strategies in a Solenoid Common-Rail Injector

2017-09-04
2017-24-0012
Nowadays, injection rate shaping and multi-pilot events can help to improve fuel efficiency, combustion noise and pollutant emissions in diesel engine, providing high flexibility in the shape of the injection that allows combustion process control. Different strategies can be used in order to obtain the required flexibility in the rate, such as very close pilot injections with almost zero Dwell Time or boot shaped injections with optional pilot injections. Modern Common-Rail Fuel Injection Systems (FIS) should be able to provide these innovative patterns to control the combustion phases intensity for optimal tradeoff between fuel consumption and emission levels.
Journal Article

Model-Based Control of BMEP and NOx Emissions in a Euro VI 3.0L Diesel Engine

2017-09-04
2017-24-0057
A model-based approach to control BMEP (Brake Mean Effective Pressure) and NOx emissions has been developed and assessed on a FPT F1C 3.0L Euro VI diesel engine for heavy-duty applications. The controller is based on a zero-dimensional real-time combustion model, which is capable of simulating the HRR (heat release rate), in-cylinder pressure, BMEP and NOx engine-out levels. The real-time combustion model has been realized by integrating and improving previously developed simulation tools. A new discretization scheme has been developed for the model equations, in order to reduce the accuracy loss when the computational step is increased. This has allowed the required computational time to be reduced to a great extent.
Technical Paper

An Iterative Histogram-Based Optimization of Calibration Tables in a Powertrain Controller

2020-04-14
2020-01-0266
To comply with the stringent fuel consumption requirements, many automobile manufacturers have launched vehicle electrification programs which are representing a paradigm shift in vehicle design. Looking specifically at powertrain calibration, optimization approaches were developed to help the decision-making process in the powertrain control. Due to computational power limitations the most common approach is still the use of powertrain calibration tables in a rule-based controller. This is true despite the fact that the most common manual tuning can be quite long and exhausting, and with the optimal consumption behavior rarely being achieved. The present work proposes a simulation tool that has the objective to automate the process of tuning a calibration table in a powertrain model. To achieve that, it is first necessary to define the optimal reference performance.
Journal Article

Cfd Diagnostic Methodology for the Assessment of Mixture Formation Quality in GDI Engines

2011-09-11
2011-24-0151
The fuel injection plays a crucial role in determining the mixture formation process in Gasoline Direct Injection (GDI) engines. Pollutant emissions, and soot emissions in particular, as well as phenomena affecting engine reliability, such as oil dilution and injector coking, are deeply influenced by the injection system features, such as injector geometric characteristics (such as injector type, injector position and targeting within the combustion chamber) and operating characteristics (such as injection pressure, injection phasing, etc.). In this paper, a new CFD methodology is presented, allowing a preliminary assessment of the mixture formation quality in terms of expected soot emissions, oil dilution and injector coking risks for different injection systems (such as for instance multihole or swirl injectors) and different injection strategies, from the early stages of a new engine design.
Journal Article

Optimization of Electrified Powertrains for City Cars

2012-06-01
2011-01-2451
Sustainable and energy-efficient consumption is a main concern in contemporary society. Driven by more stringent international requirements, automobile manufacturers have shifted the focus of development into new technologies such as Hybrid Electric Vehicles (HEVs). These powertrains offer significant improvements in the efficiency of the propulsion system compared to conventional vehicles, but they also lead to higher complexities in the design process and in the control strategy. In order to obtain an optimum powertrain configuration, each component has to be laid out considering the best powertrain efficiency. With such a perspective, a simulation study was performed for the purpose of minimizing well-to-wheel CO2 emissions of a city car through electrification. Three different innovative systems, a Series Hybrid Electric Vehicle (SHEV), a Mixed Hybrid Electric Vehicle (MHEV) and a Battery Electric Vehicle (BEV) were compared to a conventional one.
Journal Article

On the Contact Interfaces between the Driver and the Vehicle Seat

2013-04-08
2013-01-0455
In mathematical and mechanical modeling terms, automotive seating is characterized by boundary conditions at the nonlinear contact interfaces. These contact interfaces are subjected to vibro-impacts (slaps) and frictional slips. The slaps occur in contact interfaces at high amplitude vibrations, being characterized by very short duration, rapid dissipation of energy and large accelerations and decelerations. By considering friction in contact interface modeling, the simulation of the interaction between the driver and the vehicle seat becomes more realistic. Vibro-impacts and frictional slips can be simultaneously developed in a contact surface. The boundary conditions identification for a seat and a wide range of drivers' body types is performed using the concept of interference distance or penetration. The interference distance is introduced as an optimization problem. It is shown that the optimization problem provides robust solutions to minimum distance and interference problems.
Journal Article

Multi-Objective Optimization of Fuel Injection Pattern for a Light-Duty Diesel Engine through Numerical Simulation

2018-04-03
2018-01-1124
Development trends in modern common rail fuel injection systems (FIS) show dramatically increasing capabilities in terms of optimization of the fuel injection strategy through a constantly increasing number of injection events per engine cycle as well as through the modulation and shaping of the injection rate. In order to fully exploit the potential of the abovementioned fuel injection strategy optimization, numerical simulation can play a fundamental role by allowing the creation of a kind of a virtual test rig, where the input is the fuel injection rate and the optimization targets are the combustion outputs, such as the burn rate, the pollutant emissions, and the combustion noise (CN).
Technical Paper

Common Rail without Accumulator: Development, Theoretical-Experimental Analysis and Performance Enhancement at DI-HCCI Level of a New Generation FIS

2007-04-16
2007-01-1258
An innovative hydraulic layout for Common Rail (C.R.) fuel injection systems was proposed and realized. The rail was replaced by a high-pressure pipe junction to have faster dynamic system response during engine transients, smaller pressure induced stresses and sensibly reduced production costs. Compared to a commercial rail, whose inside volume ranges from 20 to 40 cm3, such a junction provided a hydraulic capacitance of about 2 cm3 and had the main function of connecting the pump delivery to the electroinjector feeding pipes. In the design of the novel FIS layout, the choice of high-pressure pipe dimensions was critical for system performance optimization. Injector supplying pipes with length and inner diameter out of the actual production range were selected and applied, for stabilizing the system pressure level during an injection event and reduce pressure wave oscillations.
Technical Paper

Optimization of a Variable Geometry Exhaust System Through Design of Experiment

2008-04-14
2008-01-0675
Experimental Design methodologies have been applied in conjunction with objective functions for the optimization of the internal geometry of a rear muffler of a subcompact car equipped with a 1.4 liters displacement s.i. turbocharged engine. The muffler also features an innovative variable geometry design. The definition of an objective function summarising the silencing capability of the muffler has been driving the optimization process with the aim to reduce the tailpipe noise while maintaining acceptable pressure losses and complying with severe space constraints. Design of Experiments techniques for the reduction of experimental plans have been shown to be extremely effective to find out the optimum values of the design parameters, allowing a remarkable reduction of the time required by the design process in comparison with full factorial designs.
Technical Paper

Fuel Cell Size and Weight Reduction Due to Innovative Metallic Bipolar Plates: Technical Process Details and Improvements

2009-04-20
2009-01-1009
In the automotive field the application of electric propulsion systems based on fuel cells requires a constant and continuing research of several optimized solutions, especially in terms of weight and size reduction. These key-factors tend to influence significantly the performance of the vehicle where the system is installed on. The main objective of the paper is to obtain breakthroughs in designing, manufacturing and assembling a fuel cell stack through the development of innovative metallic bipolar plates, that allows to set up high power density stacks, by lowering sensibly weight and size. The research activity carried out by the aforementioned authors is focused on the choice of suitable materials and the development of optimized tools, processes and techniques, in order to be able to move rapidly towards thinner bipolar plates, with new compact geometries that ensure the required stack output power.
Technical Paper

Gearbox Design by means of Genetic Algorithm and CAD/CAE Methodologies

2010-04-12
2010-01-0895
The paper discusses a gearbox design method based on an optimization algorithm coupled to a fully integrated tool to draw 3D virtual models, in order to verify both functionality and design. The aim of this activity is to explain how the state of the art of the gear design may be implemented through an optimization software for the geometrical parameters selection of helical gears of a manual transmission, starting from torque and speed time histories, the required set of gear ratios and the material properties. This approach can be useful in order to use either the experimental acquisitions or the simulation results to verify or design all of the single gear pairs that compose a gearbox. Genetic algorithm methods are applied to solve the optimization problems of gears design, due to their capabilities of managing objective functions discontinuous, non-differentiable, stochastic, or highly non-linear.
Technical Paper

A Proposal of an Oil Pan Optimization Methodology

2010-04-12
2010-01-0417
In the powertrain technology, designers must be careful on oil pan design in order to obtain the best noise, vibration and harshness (NVH) performance. This is a great issue for the automotive design because they affect the passengers' comfort. In order to reduce vibration and radiated noise in powertrain assembly, oil pan is one of the most critical components. The high stiffness of the oil pan permits to move up the natural modes of the component and, as a consequence, reduce the sound emission of the component itself. In addition, the optimized shape of the component allows the increase of natural frequency values of the engine assembly. The aim of this study is the development of a methodology to increase the oil pan stiffness starting from a sketch of the component and adding material where it is needed. The methodology is tested on a series of different models: they have the same geometry but different materials.
Technical Paper

Experimental Analysis of the Combustion Process of Commercial and Reference Fuels on the CFR Laboratory Engine

2010-10-25
2010-01-2265
As in the standard American Society for Testing and Materials (ASTM) procedure which is used to evaluate the fuel Octane Number (ON), some signal properties are considered, while others are neglected, it happens that different pressure signals of the sensor, obtained from different fuels and operating conditions, can lead to the same Knock Intensity index (KI) value, even though the knock behavior is not the same. Therefore the aim of this work was to analyze the standard signal processing chain of the Cooperative Fuel Research engine (CFR) (from the pressure sensor to the knock-meter display) and its effects on the value of the KI, for different fuels and operating conditions.
Technical Paper

Electro-Hydraulic Braking System Modelling and Simulation

2003-10-19
2003-01-3336
The first step toward a braking system ‘by wire’ is Electro-Hydraulic Braking System (EHB). The paper describes a method to evaluate through virtual experimentation the actual improvement in vehicle behaviour, from the point of view of both handling and comfort, including also pedal feeling, due to EHB. The first step consisted in modelling the hydraulic unit, comprehensive of sensors. Then it was conceived a control logic devoted to medium-low intensity braking manoeuvres, without ABS intervention, to determine an optimal braking force distribution and pedal feeling depending on the manoeuvre. A failsafe strategy, complete of on board diagnosis, to prevent dangerous system behaviour in the eventuality of a component failure was carried out and tested. Finally, EHB wheel pressure sensors were used to improve both ABS performance, increasing the adherence estimation, and Vehicle Dynamics Control (VDC) performance, through a more precise actuation.
Technical Paper

Modelling and Simulation of Variable Displacement Vane Pumps for IC Engine Lubrication

2004-03-08
2004-01-1601
The paper presents geometric, kinematic and fluid-dynamic modelling of variable displacement vane pumps for low pressure applications in internal combustion engines lubrication. All these fundamental aspects are integrated in a simulation environment and form the core of a design tool leading to the assessment of performance, critical issues, related influences and possible solutions in a well grounded engineering support to decision.
X