Refine Your Search

Topic

Search Results

Technical Paper

Maintenance Descrepency Reporting: Human Factors Issues

1997-08-05
972616
One of the most common barriers to the timely disposition of maintenance discrepancies involves communication difficulties between pilots and technicians. These barriers occur at virtually every operational level of the aviation industry from general aviation to airline. Well intentioned yet incomplete or misdirected communication often results not only in frustration, excessive down time, and recurrence of the problem, but also fosters unhealthy (and inaccurate) stereotypical notions about the overall competence of each group. This paper focuses on a two-phase study designed to identify which human factors impede pilot - mechanic communication and which factors promote pilot - mechanic communication. The project was coordinated by a joint faculty - student research team from the Department of Aviation Technology at Purdue University.
Technical Paper

Using Target Performance Indicators as a Training and Evaluation Tool

1997-08-05
972618
Most airline maintenance human factors training programs miss the mark when it comes to producing optimal behavioral and procedural changes among participating maintenance professionals. While there are many causes for training outcomes which are less than desired and anticipated, principal among these are the failure of most programs to address the pragmatic learning needs of those technicians as adult learners. Attention to andragogical principles such as clear learning goals, readily apparent relevance and direct applicability of material, immediate feedback, learner directed inquiry and self assessment can contribute greatly to achieving optimal results. A program currently under development at Purdue University utilizes a combination of classroom instruction, group discussion, and learner participation in aviation maintenance scenarios as a method for improving human factors education.
Technical Paper

Reconstruction of Noise Source in a Ducted Fan Using a Generalized Nearfield Acoustical Holography

2010-04-12
2010-01-0416
The identification of the propulsion noise of turbofan engines plays an important role in the design of low-noise aircraft. The noise generation mechanisms of a typical turbofan engine are very complicated and it is not practical, if not impossible, to identify these noise sources efficiently and accurately using numerical or experimental techniques alone. In addition, a major practical concern for the measurement of acoustic pressure inside the duct of a turbofan is the placement of microphones and their supporting frames which will change the flow conditions under normal operational conditions. The measurement of acoustic pressures on the surface of the duct using surface-mounted microphones eliminates this undesirable effect. In this paper, a generalized acoustical holography (GAH) method that is capable of estimating aeroacoustic sources using surface sound pressure is developed.
Technical Paper

Visualization techniques to identify and quantify sources and paths of exterior noise radiated from stationary and nonstationary vehicles

2000-06-12
2000-05-0326
In recent years, Nearfield Acoustical Holography (NAH) has been used to identify stationary vehicle exterior noise sources. However that application has usually been limited to individual components. Since powertrain noise sources are hidden within the engine compartment, it is difficult to use NAH to identify those sources and the associated partial field that combine to create the complete exterior noise field of a motor vehicle. Integrated Nearfield Acoustical Holography (INAH) has been developed to address these concerns: it is described here. The procedure entails sensing the sources inside the engine compartment by using an array of reference microphones, and then calculating the associated partial radiation fields by using NAH. In the second part of this paper, the use of farfield arrays is considered. Several array techniques have previously been applied to identify noise sources on moving vehicles.
Technical Paper

What Does It Take To Retire?

2002-03-19
2002-01-1331
Financial planners are always anxious to assist engineers and scientists in making retirement decisions. Many engineers, especially Industrial Engineers (IE), have had courses that provide the knowledge to make these retirement financial plans themselves. This paper will provide a method of estimating retirement needs utilizing Excel software and IE college coursework.
Technical Paper

Biomass Productivity and Sustainability of a Bioregenerative Life-Support System

1992-07-01
921359
Energy budgets for future Controlled Ecological Life-Support Systems (CELSS) must balance not only with respect to primary productivity (i.e., photosynthesis) vs. utilization steps (human maintenance plus preparative and recycling processes), but also with respect to necessary and desired nonlife-support activities of crews (e.g., exploration, research). Present objectives of the NSCORT program at Purdue University include identification of critical paths for biomass conversion to desired forms with energetics and rate-constant properties that are compatible with life-support sustainability within a CELSS. Physico-chemical recycling systems working in conjunction with bioregenerative ones likely will be required to keep time constants of critical processes within reasonable limits.
Technical Paper

Application of Electric Vehicle System Design to Grand Prix EV Kart

2011-04-12
2011-01-0353
The renewed interest in electric and hybrid-electric vehicles has been prompted by the drastic rise in oil prices in 2008 and launch of new initiatives by the Federal Government. One of the key issues is to promote the incorporation of electric drivetrain in vehicles at all levels and particularly with emphasis on educational activities to prepare the workforce needed for the near future. Purdue University has been conducting a Grand Prix for over 50 years with Gas-powered Karts. In April 2010, an annual event was initiated to hold an EV Grand Prix where 17 EV Karts participated in the competition. Four of the participating teams comprised of Purdue students in a new graduate course for EV design and fabrication. Using the basic framework of the gas-powered Kart, an electric version was developed as a part of this course. Other participants were also provided with the guidelines and design parameters developed for the course and competition.
Technical Paper

Integrity Sensing with Smart Polymers and Rubber Components on Vehicles (i.e. Tires, Hoses, Seals)

2013-04-08
2013-01-0742
This research provides a capacitance based method for monitoring the integrity of tires and other polymeric products during manufacturing and throughout the useful product life. Tire and wheel failures and tire degradation were the reported cause for approximately 19320 vehicle crashes over a two and a half year period according to the U.S. Department of Transportation National Highway Traffic Safety Administration's 2008 survey. Tires are complex composite structures composed of layers of formulated cross-linked rubber, textiles, and steel reinforcement layers. Tire production requires precise manufacturing through chemical and mechanical methods to achieve secure attachment of all layers. Tires are subjected to a variety of harsh environments, experience heavy loads, intense wear, heat, and in many cases lack of maintenance. These conditions make tires extremely susceptible to damage.
Technical Paper

Sensors for Tomorrow's Precision Agriculture

1996-08-01
961760
This paper describes sensors and systems developed, or under development, by researchers at Purdue University including: an automated soil nutrient mapping system; a real-time acoustic soil texture sensor; an improved, real-time soil organic matter (SOM) sensor; a real-time soil compaction sensor; and an animal manure application monitoring and control system. Issues to consider for sensor use and development, criteria for evaluating the potential for successful sensor implementation, and likely future sensors for site-specific crop management (SSCM) are also discussed.
Technical Paper

Farmers Perspective on Machinery Until 2000

1996-08-01
961853
Farmers are a small group, mostly college educated who run multi-million dollar yearly operations. Recent favorable economics has allowed this sector to look at new technology and determine the best way to invest in it. New considerations in the last few years have led to minimum/alternative tillage and planting, site specific farming decisions and small technology groups of farmers. The authors have put together their thoughts and wants which should be evaluated by future suppliers of technology and farm machinery.
Technical Paper

Particle Image Velocimetry Characterization of a Turbocharger Turbine Inlet Flow

1997-02-24
970343
Modern diesel engines typically utilize pulse-turbocharging where an increase in exhaust gas transport efficiency is achieved at the expense of creating a highly unsteady flow through the turbine which may have a detrimental effect on turbine performance. As the turbocharger plays a major role in the performance and emissions of the engine system, the characterization of on-engine turbocharger aerodynamics is critical. Thus, this paper is directed at the investigation of the turbocharger turbine volute inlet flowfield on an in-line, six cylinder, diesel engine. Specifically, Particle Image Velocimetry (PIV), a quantitative non-intrusive whole flowfield measurement technique, is used to perform a detailed study of the on-engine pulsating flowfield at the volute inlet of the twin-entry turbocharger turbine.
Technical Paper

Active Control of Wind Noise Using Robust Feedback Control

1997-05-20
971891
A feedback controller bas been developed using robust control techniques to control the sound radiated from turbulent flow driven plates. The control design methodology uses frequency domain loop shaping techniques. System uncertainty, sound pressure level reductions, and actuator constraints are included in the design process. For the wind noise problem, weighting factors have been included to distinguish between the importance of modes that radiate sound and those that do not radiate. The wind noise controller has been implemented in the quiet wind tunnel facility at the Ray W. Herrick Laboratories at Purdue University. A multiple-input, multiple-output controller using accelerometer feedback and shaker control was able to achieve control up to 1000 Hz. Sound pressure level reductions of as much as 15 dB were achieved at the frequencies of the plates modes. Overall reductions over the 100-1000 Hz band were approximately 5 dB.
Technical Paper

Noise Source Identification in Thermal Systems Using Transient Spectral Analysis

1997-05-20
972036
A noise source identification technique for the analysis of thermal systems is presented. The proposed method uses transient spectral sound data to assist in determining the source of sound radiation by tracking the variation of the frequency of tones during transient thermal loading (i.e., thermal system warm-up). By considering the temperature dependence of the modulus of elasticity (Young's modulus) it can be shown that structure related tones will decrease in frequency during warm-up. Tones due to propagation of sound in many fluids (i.e., gases and water) will increase in frequency during warm-up due to the temperature dependence of the speed of sound. The analysis method is demonstrated by identifying the source of several noise tones for a pulse combustion furnace.
Technical Paper

On-Engine Turbocharger Turbine Inlet Flow Characterization

1997-04-01
971565
Increased power and fuel efficiency requirements ofmodern vehicle diesel engines have lead to wide pread use of turbocharging to increase engine power-to-weight ratio. Typically, these systems employ pulse-turbocharging where an increase in exhaust gas transport efficiency is achieved at the expense of creating a highly unsteady flow through the turbine. This imposed unsteadiness is known to have a significant effect on turbine performance. To date, research performed to quantify the effects of exhaust pulsations on the performance of radial turbocharger turbines has been performed in off-engine facilities which simulate the engine manifold conditions. However, to better gauge the applicability of these data, a detailed investigation into the actual on-engine turbocharger operating environment is required. Research at Purdue University is focused on the characterization of the nature of the on-engine turbine operating environment and how it relates to turbocharger performance.
Technical Paper

Characterization and Modeling of Turbocharger Dynamic Performance

1997-04-01
971566
The range of applications of heavy duty diesel engines is quite diverse. The development of diesel engines has been characterized by a steady increase in power to weight ratios, with the turbocharger being the key component in achieving this increased performance. The turbocharger, consisting of a radial or axial flow turbine and a radial flow compressor, presents perhaps one of the most challenging tasks facing the turbomachinery designer. This is, to a p a t extent, due to the highly unsteady environment in which the turbocharger operates. The time scales of this unsteadiness range fiom those on the order of exhaust valve frequency to those associated with transient operation during acceleration and deceleration. In order to predict the time-accurate performance of the turbocharger in this environment, a range of dynamic models can be envisioned spanning the range from quasi-steady assumptions to full viscous flow solvers.
Technical Paper

Optimization of Natural Gas Engine Performance by Multidimensional Modeling

1997-04-01
971567
Multidimensional numerical simulations are performed to predict and optimize engine performance of a spark-ignited natural gas engine. The effects of swirl and combustion chamber geometry on in-cylinder turbulence intensity, burning rate and heat transfer are investigated using the KIVA multidimensional engine simulation computer code. The original combustion model in the KIVA code has been replaced by a model which was recently developed to predict natural gas turbulent combustion under engine-like conditions. Measurements from a constant volume combustion chamber and engine test data have been used to calibrate the combustion model. With the numerical results from KIVA code engine thermal efficiencies were predicted by the thermodynamics based WAVE code. The numerical results suggest alternative combustion chamber designs and an optimum swirl range for increasing engine thermal efficiency.
Technical Paper

Computer Controlled Hydraulics — A Combine Application

1980-09-01
801019
The feasibility of controlling the threshing cylinder of a conventional corn combine with electro hydraulic elements controlled by a digital computer was concluded. The laboratory experiments attained the performance index established after consultation with manufacturers and farmers
Technical Paper

Heat Transfer in a Cooled and an Insulated Diesel Engine

1989-02-01
890572
Detailed heat transfer measurements were made in the combustion chamber of a Cummins single cylinder NH-engine in two configurations: cooled metal and ceramic-coated. The first configuration served as the baseline for a study of the effects of insulation and wall temperature on heat transfer. The second configuration had several in-cylinder components coated with 1.25 mm (0.050″) layer of zirconia plasma spray -- in particular, piston top, head firedeck and valves. The engine was operated over a matrix of operating points at four engine speeds and several load levels at each speed. The heat flux was measured by thin film thermocouple probes. The data showed that increasing the wall temperature by insulation reduced the heat flux. This reduction was seen both in the peak heat flux value as well as in the time-averaged heat flux. These trends were seen at all of the engine operating conditions.
Technical Paper

Promoting More Effective Communication of Maintenance Issues Between Pilots and Maintenance Technicians

2000-05-09
2000-01-1705
The lack of effective and efficient communication between pilots and maintenance technicians has been recognized as a problem in general aviation by both members of the industry and academia. The goal of this paper is to provide an accounting of the impact that communication between maintenance technicians and pilots, or the lack thereof, can have upon both the bottom line and the experience of those who operate within the general aviation arena. The researchers interviewed and observed maintenance technicians and pilots in general aviation operations to identify what members on both sides of the communication process identified as being problematic and troubling. Several of the major barriers to communication, as well as several strategies to overcome those barriers, are discussed.
Technical Paper

The Inclusion of College Students in the Assessment of Aviation Industry Safety Procedures and Utilization of Current Safety Resources

2000-04-11
2000-01-2119
Purdue University Aviation Technology at West Lafayette and Indianapolis, in concert with a number of industry participants, initiated research at West Lafayette and industry locations on ways and means to address safety concerns affecting a number of air transport carriers as well as general aviation operations. The outcome of the research resulted in a program with airlines and general aviation operators that lead to the development of an interactive instructional technique primarily based on empirical studies at the various facilities. Subsequent to the observation periods were sessions addressing recommendations for resolution of these jointly recognized issues. Part of this effort involved developing innovative methods to report these incidents in a manner that would ensure open, effective communications amongst all the concerned parties. This ongoing research involves the use of students to assess the utilization of current safety resources, or lack thereof, in industry.
X