Refine Your Search

Topic

Author

Search Results

Journal Article

Heavy-Duty RCCI Operation Using Natural Gas and Diesel

2012-04-16
2012-01-0379
Many recent studies have shown that the Reactivity Controlled Compression Ignition (RCCI) combustion strategy can achieve high efficiency with low emissions. However, it has also been revealed that RCCI combustion is difficult at high loads due to its premixed nature. To operate at moderate to high loads with gasoline/diesel dual fuel, high amounts of EGR or an ultra low compression ratio have shown to be required. Considering that both of these approaches inherently lower thermodynamic efficiency, in this study natural gas was utilized as a replacement for gasoline as the low-reactivity fuel. Due to the lower reactivity (i.e., higher octane number) of natural gas compared to gasoline, it was hypothesized to be a better fuel for RCCI combustion, in which a large reactivity gradient between the two fuels is beneficial in controlling the maximum pressure rise rate.
Journal Article

An Experimental Study of Diesel-Fuel Property Effects on Mixing-Controlled Combustion in a Heavy-Duty Optical CI Engine

2014-04-01
2014-01-1260
Natural luminosity (NL) and chemiluminescence (CL) imaging diagnostics are employed to investigate fuel-property effects on mixing-controlled combustion, using select research fuels-a #2 ultra-low sulfur emissions-certification diesel fuel (CF) and four of the Fuels for Advanced Combustion Engines (FACE) diesel fuels (F1, F2, F6, and F8)-that varied in cetane number (CN), distillation characteristics, and aromatic content. The experiments were performed in a single-cylinder heavy-duty optical compression-ignition (CI) engine at two injection pressures, three dilution levels, and constant start-of-combustion timing. If the experimental results are analyzed only in the context of the FACE fuel design parameters, CN had the largest effect on emissions and efficiency.
Technical Paper

The Effect of a Preload on the Decoupling Efficiency of Exhaust Flexible Coupling Devices

1997-11-17
973272
The variation in the decoupling effect of exhaust flexible couplings under a vertical preload caused by changes in the direction of the exhaust pipe routing was investigated. Both self-supporting and underbody flexible couplings were tested. The results indicate that, in general, a preload decreases the decoupling efficiency of both types of flexible couplings. In addition, the results indicate that the efficiency of the flexible coupling is effected by the following three conditions: the direction of preload with respect to gravity, the location of the preload relative to the coupling, and the stiffness of the various components of the flexible coupling.
Technical Paper

A Co-Simulation Environment for Virtual Prototyping of Ground Vehicles

2007-10-30
2007-01-4250
The use of virtual prototyping early in the design stage of a product has gained popularity due to reduced cost and time to market. The state of the art in vehicle simulation has reached a level where full vehicles are analyzed through simulation but major difficulties continue to be present in interfacing the vehicle model with accurate powertrain models and in developing adequate formulations for the contact between tire and terrain (specifically, scenarios such as tire sliding on ice and rolling on sand or other very deformable surfaces). The proposed work focuses on developing a ground vehicle simulation capability by combining several third party packages for vehicle simulation, tire simulation, and powertrain simulation. The long-term goal of this project consists in promoting the Digital Car idea through the development of a reliable and robust simulation capability that will enhance the understanding and control of off-road vehicle performance.
Technical Paper

Initial Evaluation of a Spill Valve Concept for Two-Stroke Cycle Engine Light Load Operation

1990-09-01
901663
Two-stroke cycle direct injection engines can achieve adequate stability at idle with stratified combustion at very lean overall air-fuel ratio, but exhaust temperature is very low. A rotary valve system was designed to spill charge from the cylinder into the intake tract during the compression stroke, in order to allow stable operation at lower engine delivery ratio and thereby increase exhaust temperature. Reduction of the engine delivery ratio was not achieved due to the poor scavenging characteristics of the swirl liners used, which resulted in high content of exhaust residual gas in the spill recirculation flow. Although the concept objective of higher exhaust temperature was not realized, the results indicate that the concept may be feasible if high purity of the spill recirculation flow can be achieved in conjunction with high trapping efficiency.
Technical Paper

Effects of Multiple Injections and Flexible Control of Boost and EGR on Emissions and Fuel Consumption of a Heavy-Duty Diesel Engine

2001-03-05
2001-01-0195
A study of the combined use of split injections, EGR, and flexible boosting was conducted. Statistical optimization of the engine operating parameters was accomplished using a new response surface method. The objective of the study was to demonstrate the emissions and fuel consumption capabilities of a state-of-the-art heavy -duty diesel engine when using split injections, EGR, and flexible boosting over a wide range of engine operating conditions. Previous studies have indicated that multiple injections with EGR can provide substantial simultaneous reductions in emissions of particulate and NOx from heavy-duty diesel engines, but careful optimization of the operating parameters is necessary in order to receive the full benefit of these combustion control techniques. Similarly, boost has been shown to be an important parameter to optimize. During the experiments, an instrumented single-cylinder heavy -duty diesel engine was used.
Technical Paper

Design and Optimization of the University of Wisconsin's Parallel Hybrid-Electric Sport Utility Vehicle

2002-03-04
2002-01-1211
The University of Wisconsin - Madison FutureTruck Team has designed and built a four-wheel drive, charge sustaining, parallel hybrid-electric sport utility vehicle for entry into the FutureTruck 2001 competition. The base vehicle is a 2000 Chevrolet Suburban. Our FutureTruck is nicknamed the “Moollennium” and weighs approximately 2427 kg. The vehicle uses a high efficiency, 2.5 liter, turbo-charged, compression ignition common rail, direct-injection engine supplying approximately 104 kW of peak power and a three phase AC induction motor that provides an additional 68.5 kW of peak power. This hybrid drivetrain is an attractive alternative to the large displacement V8 drivetrain, as it provides comparable performance with lower emissions and fuel consumption. The PNGV Systems Analysis Toolkit (PSAT) model predicts a Federal Testing Procedure (FTP) urban driving cycle fuel economy of 11.24 km/L (26.43 mpg) with California Ultra Low Emission Vehicle (ULEV) emissions levels.
Technical Paper

Ratio-Metric Hesitation Fuel Detection and Compensation in Power Split Hybrid Electric Vehicles

2011-04-12
2011-01-0882
Power Split Hybrids are unique when compared to conventional powertrains from the perspective that the engine speed is directly controlled by the motor/generator at all times. Therefore, traditional methods of detecting variations in fuel volatility do not apply for Power Split Hybrid based configurations. In their place, the Ratio-metric Fuel Compensation (RFC) method has been developed for Power Split Hybrid generator configurations to detect and compensate for engine hesitations within milliseconds of the first injection event. Furthermore, test results have shown that in the presence of low volatility fuel, RFC provides robust starts at the ideal lean air fuel ratio required for PZEV emissions compliance.
Technical Paper

Simultaneous Reduction of Soot and NOX Emissions by Means of the HCPC Concept: Complying with the Heavy Duty EURO 6 Limits without Aftertreatment System

2013-09-08
2013-24-0093
Due to concerns regarding pollutant and CO2 emissions, advanced combustion modes that can simultaneously reduce exhaust emissions and improve thermal efficiency have been widely investigated. The main characteristic of the new combustion strategies, such as HCCI and LTC, is that the formation of a homogenous mixture or a controllable stratified mixture is required prior to ignition. The major issue with these approaches is the lack of a direct method for the control of ignition timing and combustion rate, which can be only indirectly controlled using high EGR rates and/or lean mixtures. Homogeneous Charge Progressive Combustion (HCPC) is based on the split-cycle principle. Intake and compression phases are performed in a reciprocating external compressor, which drives the air into the combustor cylinder during the combustion process, through a transfer duct. A transfer valve is positioned between the compressor cylinder and the transfer duct.
Technical Paper

Progress in Diesel Engine Intake Flow and Combustion Modeling

1993-09-01
932458
The three-dimensional computer code, KIVA, is being modified to include state-of-the-art submodels for diesel engine flow and combustion. Improved and/or new submodels which have already been implemented are: wall heat transfer with unsteadiness and compressibility, laminar-turbulent characteristic time combustion with unburned HC and Zeldo'vich NOx, and spray/wall impingement with rebounding and sliding drops. Progress on the implementation of improved spray drop drag and drop breakup models, the formulation and testing of a multistep kinetics ignition model and preliminary soot modeling results are described. In addition, the use of a block structured version of KIVA to model the intake flow process is described. A grid generation scheme has been developed for modeling realistic (complex) engine geometries, and initial computations have been made of intake flow in the manifold and combustion chamber of a two-intake-valve engine.
Technical Paper

A New Mechanism for Measuring Exhaust A/F

1993-11-01
932957
Exhaust gas air-fuel ratio (A/F) sensors are common devices in powertrain feedback control systems aimed at minimizing emissions. Both resistive (using TiO2) and electrochemical (using ZrO2) mechanisms are used in the high temperature ceramic devices now being employed. In this work a new mechanism for making the measurement is presented based on the change in the workfunction of a Pt film in interaction with the exhaust gas. In particular it is found that the workfunction of Pt increases reversibly by approximately 0.7 V at that point (the stoichiometric ratio) where the exhaust changes from rich to lean conditions. This increase arises from the adsorption of O2 on the Pt surface. On returning to rich conditions, catalytic reaction of the adsorbed oxygen with reducing species returns the workfunction to its original value. Two methods, one capacitive and one thermionic, for electrically sensing this workfunction change and thus providing for a practical device are discussed.
Technical Paper

Diesel Fuel Delivery Module for Light Truck Applications

1993-11-01
932980
This paper reviews the design and development of a self-filling, in-tank fuel system reservoir intended for use in diesel engine vehicle applications. This new idea eliminates engine driveability concerns (stumbles, hesitations, stalling, etc.) associated with an inconsistent supply of fuel from the fuel tank to the engine, particularly during sudden vehicle maneuvers and with low fuel tank conditions.
Technical Paper

Effect of Tailpipe Tip Orientation on Backpressure

1993-11-01
933041
A straight cut tailpipe tip was empirically evaluated for the effect that the tip's orientation to a cross-wind had on the ability to reduce exhaust system backpressures associated with the purging of the combustion products. The straight across tip was attached to a vehicle at various angles of inclination to their axes while exhaust back pressure and performance readings were recorded. Testing indicated that there is a preferred orientation to reduce backpressure. Attempts to match on-vehicle data with wind tunnel data were met with partial success.
Technical Paper

Impact of Computer Aided Engineering on Ford Light Truck Cooling Design and Development Processes

1993-04-01
931104
This paper presents the benefits of following a disciplined thermal management process during the design and development of Ford Light Truck engine cooling systems. The thermal management process described has evolved through the increased use of Computer Aided Engineering (CAE) tools. The primary CAE tool used is a numerical simulation technique within the field of Computational Fluid Dynamics (CFD). The paper discusses the need to establish a heat management team, develop a heat management model, construct a three dimensional CFD model to simulate the thermal environment of the engine cooling system, and presents CFD modeling examples of Ford Light Trucks with engine driven cooling fans.
Technical Paper

Improvements in 3-D Modeling of Diesel Engine Intake Flow and Combustion

1992-09-01
921627
A three-dimensional computer code (KIVA) is being modified to include state-of-the-art submodels for diesel engine flow and combustion: spray atomization, drop breakup/coalescence, multi-component fuel vaporization, spray/wall interaction, ignition and combustion, wall heat transfer, unburned HC and NOx formation, soot and radiation and the intake flow process. Improved and/or new submodels which have been completed are: wall heat transfer with unsteadiness and compressibility, laminar-turbulent characteristic time combustion with unburned HC and Zeldo'vich NOx, and spray/wall impingement with rebounding and sliding drops.
Technical Paper

Image Analysis of Diesel Sprays

1992-09-01
921628
Time resolved measurements of non-evaporating, non-burning fuel sprays injected into a quiescent atmosphere were performed. The experimental parameters included ambient gas density, mass of fuel injected per stroke, pump speed, and nozzle diameter. High speed films of fuel sprays were obtained using a rapidly pulsed Cu-vapor laser in synchronization with a high frame rate film camera. The laser light intensity transmitted through the spray was recorded directly by the film camera. The information encoded on the film was subsequently digitized using a projector/CCD camera system. Finally, instantaneous ensemble averaged properties of droplets constituting the spray were estimated by quantitative analysis of the digitized transmission images. These measured properties included the Sauter mean diameter (SMD) averaged over the entire spray or over a given cross-section. In addition, the images yielded other spray parameters such as tip penetration, cone angle, and injection duration.
Technical Paper

Development of a Tunable Stamped Collector to Improve Exhaust System Performance

1994-11-01
942271
A tunable stamped collector was developed to improve vehicle performance, drive-by noise and subjective noise quality, and reduced thermal stress concentrations. The stamped collector is located at the junction of the legs of the down pipe/catalytic converter assembly for a transverse mounted V-6 engine and acts to equalize the leg length of the down pipe, as well as provide acoustic tuning volume. This collector differs from most other methods to equalize leg lengths on transverse mounted engines in that it has a tuning chamber incorporated into the design itself, which allows for specific noise frequencies to be reduced. Performance characteristics were measured for a conventional down-pipe and the stamped collector using the following analysis techniques: Frequency analysis of tailpipe noise emissions. Drive-by noise emissions. Horsepower measurements using an engine dynamometer.
Technical Paper

Ford Explorer Control Trac 4x4 System

1995-11-01
952645
PURPOSE - Present the new Control Trac four wheel drive system which is the first application of an interactive four wheel drive in a sport utility vehicle. PROBLEM - The Control Trac system was developed in response to the need for a light weight, space efficient, customer friendly, and full function four wheel drive system. The system was targeted to be fully compatible with on highway and off road usage. CONCLUSION - The Control Trac system is a remarkably user friendly, practical, technologically advanced four wheel drive system; compatible with on highway and off road operation.
Technical Paper

Optimized Damping to Control Rear End Breakaway in Light Trucks

1996-10-01
962225
Rear end break-away, or skate, is a phenomenon that occurs when live axle equipped vehicles are driven aggressively on rough, winding roads. This paper reviews instrumented dynamic testing of a specially built vehicle. Initial testing linked skate to the tramp oscillation mode of the rear axle. Two variables were evaluated for reducing skate: shock absorber valving and shock absorber placement. The principal conclusion of this work is that although some reductions in skate are possible by adjusting shock absorber valving, optimum control of skate is facilitated by packaging the shock absorbers near the wheels.
Technical Paper

Development of the 6.8L V10 Heat Resisting Cast-Steel Exhaust Manifold

1996-10-01
962169
This paper presents the experience of Ford Motor Company and Hitachi Metals Ltd., in the development and design of the exhaust manifolds for the new 1997 Ford 6.8L, Vl0 gasoline truck engine. Due to the high-exhaust temperature 1000 °C (1832 °F), heat-resisting nodular graphite irons, such as high-silicon molybdenum iron and austenitic iron with nickel cannot meet the durability requirements, mainly thermal fatigue evaluation. The joint effort by both companies include initial manifold design, prototype development, engine simulation bench testing, failure analysis, material selections (ferritic or austenitic cast steel), production processes (casting, machining) and final inspection. This experience can well be applied to the design and development of new cast stainless-steel exhaust manifolds in the future. This is valid due to the fact that US EPA is requiring all car manufacturers to meet the new Bag 6-Emission Standards which will result in increased exhaust gas temperature.
X