Refine Your Search

Topic

Search Results

Journal Article

Active Thermal Management with a Dual Mode Coolant Pump

2013-04-08
2013-01-0849
A GT-suite commercial code was used to develop a fully integrated model of a light duty commercial vehicle with a V6 diesel engine, to study the use of a BorgWarner dual mode coolant pump (DMCP) in active thermal management of the vehicle. An Urban Dynamometer Driving Schedule (UDDS) was used to validate the simulation results with the experimental data. The conventional mechanical pump from the validated model was then replaced with the dual mode coolant pump. The control algorithm for the pump was based on controlling the coolant temperature with pump speed. Maximum electrical speed of the pump and the efficiency of the pump were used to determine whether the pump should run in mechanical or electrical mode. The model with the dual mode coolant pump was simulated for the UDDS cycle to demonstrate the effectiveness of control strategy.
Technical Paper

Commonality and Differences between Cruiser, Sport, and Touring Motorcycles: An Ergonomics Study

2007-04-16
2007-01-0438
This paper presents results of two surveys, namely, a photographic measurements survey and a rider survey, conducted to determine how the type and origin of a motorcycle related to motorcycle dimensions, rider characteristics, seating posture, and motorcycle controls and displays. In the photographic survey, 12 most popular motorcycles covering three types (cruiser, sport, and touring) and three origins (Europe, Asia and North America) were measured from photographs taken in a standardized procedure with and without a rider. The data showed that the Asian and North American cruisers were very similar in all dimensions. These include seat height, seat to handlebar location, seat to foot rest location, foot rest size, and handgrip stance. This resulted in similar rider posture. North American sport motorcycles were more like cruisers than the Asian and European sport motorcycles.
Technical Paper

PEM Fuel Cell Stack Characterization and its Integration in Simulating a Fuel Cell Powertrain

2008-06-23
2008-01-1796
Fuel cell based powertrains are considered as potential candidates for future vehicles. Modeling of vehicle powertrains, using a combination of components and energy storage media, are widely used to predict vehicle performances under different duty cycles. This paper deals with performance analysis of a light-duty vehicle comprised of a PEM fuel cell stack, in combination with different energy storage systems using Powertrain Simulation Analysis Toolkit (PSAT). The performance of the stack was characterized by experimental data on a smaller PEM stack and was used in the simulation. The stack data was collected at controlled loading and thermal parameters. Three energy storage systems are considered in the analysis: nickel metal hydride battery storage, lithium-ion battery storage and ultra capacitor energy storage. The simulation results were analyzed for comparative evaluations and to optimize the performance of the fuel cell powertrain configurations.
Technical Paper

Characterization of Exhaust Emissions in a SI Engine using E85 and Cooled EGR

2009-06-15
2009-01-1952
Gasoline-ethanol blends are being used or have been considered as a fuel for spark ignition engines. The motivation for using the blends varies in indifferent parts of the world and even in regions within a country. The increasing cost of gasoline, combined with regional tax incentives, is one of the reasons for increased interests in gasoline-ethanol blends in recent years in the U.S. Many vehicular engines are not designed to use a specific gasoline-ethanol blend. Rather, the engines have multi-blend capability, ranging from E0 to about E85. It is plausible that engine-out emissions will vary depending on the blend being used which may be further impacted by the level of EGR used with the blends. The present work was carried out to investigate engine out emissions when a vehicular spark-ignition engine was operated on E0 and E85 and different levels of EGR. A 4-cylinder, 2.5 liter, PFI engine was used in the experimental investigation.
Technical Paper

Simulating an Integrated Business Environment that Supports Systems Integration

2010-10-19
2010-01-2305
This paper describes the design and application of a business simulation to help train employees about the new business model and culture that for an automotive supplier company that designs connected vehicle and other advanced electronic products for the automotive industry. The simulation, called SIM-i-TRI, is a three to four day collaborative learning activity that simulates the executive, administrative, engineering, manufacturing, and marketing functions in three divisions of a manufacturer that supplies parts and systems to customers in industries similar to the automotive industry. It was originally designed to support the new employee orientation at the Tier 1 supplier and to provide the participants a safe environment to practice the lessons from the orientation. The simulation has been used several times a month in the US, England, and Germany for over four years.
Technical Paper

Web-Based Vehicle Performance Simulations Using Microsoft Excel

2001-03-05
2001-01-0335
Although computer models for vehicle and sub-system performance simulations have been developed and used extensively in the past several decades, there is currently a need to enhance the overall availability of these types of tools. Increasing demands on vehicle performance targets have intensified the need to obtain rapid feedback on the effects of vehicle modifications throughout the entire development cycle. At the same time, evolution of the PC and development of Web-based applications have contributed to the availability, accessibility, and user-friendliness of sophisticated computer analysis. Web engineering is an ideal approach in supporting globalization and is a cost-effective design-analysis integration business strategy. There is little doubt that this new approach will have positive impacts on product cost, quality, and development cycle time. This paper will show how Microsoft Excel and the Web can be powerful and effective tools in the development process.
Technical Paper

LS-DYNA3D Simulation of Sheet Metal Forming using Damage Based User Subroutine

2001-03-05
2001-01-1129
LS-DYNA3D has been widely used to perform computer simulation of sheet metal forming. In the material library of LS-DYNA3D there are a number of user defined material models. In order to take full advantage of the material subroutines, it is important for the users to be able to display user defined history variables in the post processing and to establish user-defined failure criterion. In this report, the development of a damage coupled plastic model is firstly described. The damage model is then programmed in a user defined material subroutine. This is followed by performing finite element simulation of sheet metal forming with the LS-DYNA3D that has incorporated the damage coupled plastic model. The way to display the user defined history variables and how to deal with the failure criterion during the postprocessing of ETA/DYNAFORM are described. History variable distributions at several time steps are displayed and discussed in this paper.
Technical Paper

Characteristics of High-Pressure Spray and Exhaust Emissions in a Single- Cylinder Di Diesel Engine

2000-06-12
2000-05-0333
Regulations on exhaust emissions from light- and heavy-duty diesel engines have generated interest in high-pressure fuel injection systems. It has been recognized that high-pressure injection systems produce fuel sprays that may be more conductive to reducing exhaust emissions in direct-injection diesel engines. However, for such a system to be effective it must be matched carefully with the engine design and its operating parameters. A common-rail type of fuel injection system was investigated in the present study. The injection system utilizes an intensifier to generate injection pressures as high as 160 MPa. The fuel spray characteristics were evaluated on a test bench in a chamber containing pressurized nitrogen gas. The injection system was then incorporated in a single-cylinder diesel engine. The injection system parameters were adjusted to match engine specifications and its operating parameters.
Technical Paper

A Case Study in Remote Connectivity to Automotive Communication Networks

2001-03-05
2001-01-0069
This paper describes a case study led by Science Applications International Corporation (SAIC) of Dayton, OH USA and Dearborn Group Inc. to prove the feasibility of employing Telematics technologies to the vehicle test and measurement industry. Many test functions can be automated through the use of secure wireless technologies. For example, vehicle data can be dynamically monitored on the vehicle and data meeting pre-determined criteria could be downloaded via the wireless communications center. Additionally, central, real-time wireless monitoring of vehicle fleets provides the vehicle fleet manager with the ability to manage multiple tests simultaneously, thus improving efficiencies and potentially reducing manpower costs and compressing test schedules.
Technical Paper

A Comparison of Burn Characteristics and Exhaust Emissions from Off-Highway Engines Fueled by E0 and E85

2004-01-16
2004-28-0045
Ethanol fuel has received renewed attention in recent years because of its oxygenate content and its potential to reduce greenhouse gas emissions from spark ignition engines. The economic impact on farm industry has been one of the drivers for its use in engines in the U.S. Although ethanol, in various blends, has been used in automotive engines for almost a decade the fuel has seldom been utilized in off-highway engines where the fuel systems are not well controlled. This investigation was conducted to evaluate exhaust emissions and combustion characteristics of E85 fuel in an off-highway engine used in farm equipment. A single-cylinder, four-stroke, spark ignition engine equipped with a carburetor was used to investigate combustion and exhaust emissions produced by gasoline and blends of gasoline and ethanol fuels. The engine fuel system was modified to handle flow rates required by the engine. A variable size-metering orifice was used to control air-to-fuel ratios.
Technical Paper

Effect of Vehicle Body Style on Vehicle Entry/Exit Performance and Preferences of Older and Younger Drivers

2002-03-04
2002-01-0091
This paper presents results of a study conducted to determine differences in older (over age 55) and younger (under age 35), male and female drivers while entering and exiting vehicles with three different body styles - namely, a large sedan, a minivan and a full-size pick-up truck. Thirty-six drivers (males and females, ages 25 to 89 years) who participated in this study were first measured for their anthropometric, strength and body flexibility measures relevant to the entry/exit tasks. They were asked to first get in each vehicle and adjust their preferred seating position. Then, they were asked to get in the vehicle and their entry time was measured. Their entry maneuver was also video taped and they were asked to rate the level of ease/difficulty (using a 5-point scale) in entering. Similar procedure and measurements were conducted during their exit from each vehicle.
Technical Paper

Investigation and Benchmarking for Vehicle Floor Coverings

2003-05-05
2003-01-1575
A systematic benchmarking study was performed to investigate the acoustic performance of production floor coverings (i.e. carpets) of vehicles. A larger number of passenger cars including compact, mid-size, full size, and a truck were selected. The floor coverings were removed from these vehicles and evaluated both on absorption and sound transmission loss (STL) performances. The methodology used and the experimental results are presented in this paper. It was discovered that the design of the carpet is more important than the materials used. In addition, a carpet with highest absorption does not necessarily have the best STL and vice versa. However, an optimum design could achieve high performance in both categories.
Technical Paper

Combustion Variability in Natural Gas Fueled Engines

2003-05-19
2003-01-1935
A study was conducted to investigate combustion variability and exhaust emissions from high-speed, natural gas fueled engines. Two types of fuel systems were used in the investigation: a mixer and a port fuel injection. The overall engine performances were not much different at stoichiometric fuel-air ratio. But as the equivalence ratio was reduced the engine with the mixer produced higher levels of hydrocarbons and larger coefficient of variations in imep. The same engine exhibited longer flame development angle and rapid burn duration in comparison to the fuel injected engine. The differences in burn durations increased as the equivalence ratio decreased and the mixer system produced larger variations in their values at these operating points. The investigation showed the performance of the engine was better with natural gas injection system than with the mixer, particularly at lean equivalence ratios.
Technical Paper

A Modular Designed Three-phase ~98%-Efficiency 5kW/L On-board Fast Charger for Electric Vehicles Using Paralleled E-mode GaN HEMTs

2017-03-28
2017-01-1697
Most of the present electric vehicle (EV) on-board chargers utilize a conventional design, i.e., a boost-type Power Factor Correction (PFC) controller followed by an isolated DC/DC converter. Such design usually yields a ~94% wall-to-battery efficiency and 2~3kW/L power density at most, which makes a high-power charger, e.g., 20kW module difficult to fit in the vehicle. As described in this paper, first, an E-mode GaN HEMT based 7.2kW single-phase charger was built. Connecting three such modules to the three-phase grid allows a three-phase >20kW charger to be built, which compared to the conventional three-phase charger, saves the bulky DC-bus capacitor by using the indirect matrix converter topology. To push the efficiency and power density to the limit, comprehensive optimization is processed to optimize the single-phase module through incorporating the GaN HEMT switching performance and securing its zero-voltage switching.
Technical Paper

Development of Lightweight Hanger Rods for Vehicle Exhaust Applications

2017-03-28
2017-01-1709
Recent stringent government regulations on emission control and fuel economy drive the vehicles and their associated components and systems to the direction of lighter weight. However, the achieved lightweight must not be obtained by sacrificing other important performance requirements such as manufacturability, strength, durability, reliability, safety, noise, vibration and harshness (NVH). Additionally, cost is always a dominating factor in the lightweight design of automotive products. Therefore, a successful lightweight design can only be accomplished by better understanding the performance requirements, the potentials and limitations of the designed products, and by balancing many conflicting design parameters. The combined knowledge-based design optimization procedures and, inevitably, some trial-and-error design iterations are the practical approaches that should be adopted in the lightweight design for the automotive applications.
Technical Paper

Secure and Privacy-Preserving Data Collection Mechanisms for Connected Vehicles

2017-03-28
2017-01-1660
Nowadays, the automotive industry is experiencing the advent of unprecedented applications with connected devices, such as identifying safe users for insurance companies or assessing vehicle health. To enable such applications, driving behavior data are collected from vehicles and provided to third parties (e.g., insurance firms, car sharing businesses, healthcare providers). In the new wave of IoT (Internet of Things), driving statistics and users’ data generated from wearable devices can be exploited to better assess driving behaviors and construct driver models. We propose a framework for securely collecting data from multiple sources (e.g., vehicles and brought-in devices) and integrating them in the cloud to enable next-generation services with guaranteed user privacy protection.
Technical Paper

Effect of Biodiesel on the Tensile Properties of Nylon-6

2012-04-16
2012-01-0752
With increasing use of biofuels in the automotive industry, it has become necessary to evaluate their effects on the properties of polymers used in the fuel delivery systems. In this study, we have considered the effect of biodiesel on the tensile properties of nylon-6, 30% E-glass fiber reinforced nylon-6 and impact-modified nylon-6. The tensile specimens were immersed in 100% biodiesel for up to 7 days before determining their tensile properties. Another set of specimens were immersed in 100% biodiesel under stressed condition and then their tensile properties were determined. The absorption of biodiesel and their effects on tensile modulus, tensile strength and failure strain are reported in this paper.
Technical Paper

Development of Innovative Design Concepts for Automotive Center Consoles

2006-04-03
2006-01-1474
The objective of the paper is to present a unique design approach and its outputs: the design concepts for automotive center consoles for a near term SUV that can be produced in 2-3 years, and the second for, a more futuristic SUV, that could be produced in 10 or more years. In the first phase of this two phase project, we benchmarked center consoles from a number of existing and concept vehicles, analyzed available data (e.g. J.D. Power customer feedback surveys), and conducted studies (e.g. survey of items stored in the vehicles, item location preferences in the console area) to understand customer/user needs in designing the center consoles. In the second phase, we provided the information generated in the first phase to four groups of student teams who competed to create winning designs of the center consoles.
Technical Paper

Emissions and Their Control in Natural Gas Fueled Engines

1992-10-01
922250
An experimental study was undertaken to investigate emissions of hydrocarbons, oxides of nitrogen, carbon monoxide, and methane hydrocarbons emitted by natural gas fueled engines and the extent of their conversion in catalysts. Two engines were used in the study: a four cylinder, 1.6 liter, spark ignition engine and a modified version of the same engine with only one of the cylinders operating at 0.4 liter capacity. Two-way and three-way catalysts were used to treat exhaust gases leaving the engine. Natural gas was supplied through gas carburetors operated at regulated pressures and supplying air-fuel ratios in the desired range. The results of the investigation showed that oxides of nitrogen could not be reduced in a three-way catalyst to the levels found in gasoline fueled engines when the operating air-fuel ratio was stoichiometric.
Technical Paper

Lean Burn Natural Gas Fueled S.I.Engine and Exhaust Emissions

1995-10-01
952499
An experimental study was undertaken to study exhaust emission from a lean-burn natural gas spark ignition engine. The possibility that such an engine may help to reduce exhaust emissions substantially by taking advantage of natural gas fuel properties, such as its antiknock properties and extended lean flammability limit compared to gasoline, was the main motivation behind the investigation. A four cylinder, automotive type spark ignition engine was used in the investigation. The engine was converted to operate on natural gas by replacing its fuel system with a gaseous carburetion system. A 3-way metal metrix catalytic converter was used in the engine exhaust system to reduce emission levels. The engine operated satisfactorily at an equivalence ratio as lean as 0.6, at all speeds and loads. As a result NOx emissions were significantly reduced. However, hydrocarbon emissions were high, particularly at very lean conditions and light loads.
X