Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Lower Limb Biomechanics

1986-10-01
861924
Normal motion of the lower limbs is discussed in this paper. The biomechanics of human gait has been studied experimentally using an instrumented walkway and analytically by means of mathematical models. Experimental methods for measuring ground reaction forces and limb kinematics are discussed. If limb kinematics are known, they can be used to compute the resultant joint forces and moments, using equations of motion which are algebraic in form. To obtain limb kinematics from the differential equations of motion, the problem is generally redundant, the degree of redundancy being equal to the number of unknown joint moments. The computation of muscle, ligament and bone contact forces from known resultant loads is also a redundant problem because there are more unknowns than there are available equations. For these there is no general consensus regarding the best objective function to be minimized.
Technical Paper

High-Speed Seatbelt Pretensioner Loading of the Abdomen

2006-11-06
2006-22-0002
This study characterizes the response of the human cadaver abdomen to high-speed seatbelt loading using pyrotechnic pretensioners. A test apparatus was developed to deliver symmetric loading to the abdomen using a seatbelt equipped with two low-mass load cells. Eight subjects were tested under worst-case scenario, out-of-position (OOP) conditions. A seatbelt was placed at the level of mid-umbilicus and drawn back along the sides of the specimens, which were seated upright using a fixed-back configuration. Penetration was measured by a laser, which tracked the anterior aspect of the abdomen, and by high-speed video. Additionally, aortic pressure was monitored. Three different pretensioner designs were used, referred to as system A, system B and system C. The B and C systems employed single pretensioners. The A system consisted of two B system pretensioners. The vascular systems of the subjects were perfused.
Technical Paper

Development of a Three-Dimensional Finite Element Chest Model for the 5th Percentile Female

2005-11-09
2005-22-0012
Several three-dimensional (3D) finite element (FE) models of the human body have been developed to elucidate injury mechanisms due to automotive crashes. However, these models are mainly focused on 50th percentile male. As a first step towards a better understanding of injury biomechanics in the small female, a 3D FE model of a 5th percentile female human chest (FEM-5F) has been developed and validated against experimental data obtained from two sets of frontal impact, one set of lateral impact, two sets of oblique impact and a series of ballistic impacts. Two previous FE models, a small female Total HUman Model for Safety (THUMS-AF05) occupant version 1.0ϐ (Kimpara et al., 2002) and the Wayne State University Human Thoracic Model (WSUHTM, Wang 1995 and Shah et al., 2001) were integrated and modified for this model development.
X