Refine Your Search

Topic

Search Results

Journal Article

Modeling and Validation of Rapid Prototyping Related Available Workspace

2014-04-01
2014-01-0751
Path planning and re-planning for serial 6 degree of freedom (DOF) robotic systems is challenging due to complex kinematic structure and application conditions which affects the robot's tool frame position, orientation and singularity avoidance. These three characteristics represent the key elements for production planning and layout design of the automated manufacturing systems. The robot trajectory represents series of connected points in 3D space. Each point is defined with its position and orientation related to the robot's base frames or predefined user frame. The robot will move from point to point using the desired motion type (linear, arc, or joint). The trajectory planning requires first to check if robot can reach the selected part(s). This can be simply done by placing the part(s) inside the robot's work envelope. The robot's work envelope represents a set of all robots' reachable points without considering their orientation.
Journal Article

A Comparison of the Behaviors of Steel and GFRP Hat-Section Components under Axial Quasi-Static and Impact Loading

2015-04-14
2015-01-1482
Hat-sections, single and double, made of steel are frequently encountered in automotive body structural components. These components play a significant role in terms of impact energy absorption during vehicle crashes thereby protecting occupants of vehicles from severe injury. However, with the need for higher fuel economy and for compliance to stringent emission norms, auto manufacturers are looking for means to continually reduce vehicle body weight either by employing lighter materials like aluminum and fiber-reinforced plastics, or by using higher strength steel with reduced gages, or by combinations of these approaches. Unlike steel hat-sections which have been extensively reported in published literature, the axial crushing behavior of hat-sections made of fiber-reinforced composites may not have been adequately probed.
Journal Article

A Linkage Based Solution Approach for Determining 6 Axis Serial Robotic Travel Path Feasibility

2016-04-05
2016-01-0336
When performing trajectory planning for robotic applications, there are many aspects to consider, such as the reach conditions, joint and end-effector velocities, accelerations and jerk conditions, etc. The reach conditions are dependent on the end-effector orientations and the robot kinematic structure. The reach condition feasibility is the first consideration to be addressed prior to optimizing a solution. The ‘functional’ work space or work window represents a region of feasible reach conditions, and is a sub-set of the work envelope. It is not intuitive to define. Consequently, 2D solution approaches are proposed. The 3D travel paths are decomposed to a 2D representation via radial projections. Forward kinematic representations are employed to define a 2D boundary curve for each desired end effector orientation.
Technical Paper

An Optimization Study of Occupant Restraint System for Different BMI Senior Women Protection in Frontal Impacts

2020-04-14
2020-01-0981
Accident statistics have shown that older and obese occupants are less adaptable to existing vehicle occupant restraint systems than ordinary middle-aged male occupants, and tend to have higher injury risk in vehicle crashes. However, the current research on injury mechanism of aging and obese occupants in vehicle frontal impacts is scarce. This paper focuses on the optimization design method of occupant restraint system parameters for specific body type characteristics. Three parameters, namely the force limit value of the force limiter in the seat belt, pretensioner preload of the seat belt and the proportionality coefficient of mass flow rate of the inflator were used for optimization. The objective was to minimize the injury risk probability subjected to constraints of occupant injury indicator values for various body regions as specified in US-NCAP frontal impact tests requirements.
Journal Article

A Component Test Methodology for Simulation of Full-Vehicle Side Impact Dummy Abdomen Responses for Door Trim Evaluation

2011-04-12
2011-01-1097
Described in this paper is a component test methodology to evaluate the door trim armrest performance in an Insurance Institute for Highway Safety (IIHS) side impact test and to predict the SID-IIs abdomen injury metrics (rib deflection, deflection rate and V*C). The test methodology consisted of a sub-assembly of two SID-IIs abdomen ribs with spine box, mounted on a linear bearing and allowed to translate in the direction of impact. The spine box with the assembly of two abdominal ribs was rigidly attached to the sliding test fixture, and is stationary at the start of the test. The door trim armrest was mounted on the impactor, which was prescribed the door velocity profile obtained from full-vehicle test. The location and orientation of the armrest relative to the dummy abdomen ribs was maintained the same as in the full-vehicle test.
Technical Paper

A Severe Ankle and Foot Injury in Frontal Crashes and Its Mechanism

1998-11-02
983145
In a frontal automotive crash, the driver's foot is usually stepping on the brake pedal as an instinctive response to avoid a collision. The tensile force generated in the Achilles tendon produces a compressive preload on the tibia. If there is intrusion of the toe board after the crash, an additional external force is applied to the driver's foot. A series of dynamic impact tests using human cadaveric specimens was conducted to investigate the combined effect of muscle preloading and external force. A constant tendon force was applied to the calcaneus while an external impact force was applied to the forefoot by a rigid pendulum. Preloading the tibia significantly increased the tibial axial force and the combination of these forces resulted in five tibial pylon fractures out of sixteen specimens.
Technical Paper

Design of Temperature Insensitive Ribs for Crash Test Dummies

2003-03-03
2003-01-0502
The Isodamp damping material (also known as Navy Damp) used in the ribs of current crash test dummies provides human-like damping to the thorax under impact. However, the range of temperature over which it can be used is very small. A new rib design using laminates of steel, fiberglass, and commercially available viscoelastic material has been constructed. Load-deflection response and hysteresis of the laminated ribs were compared with corresponding conventional ribs fabricated from steel and Isodamp. Impact tests were conducted on laminated and conventional ribs at 18.5° C, 22.2° C and 26.6° C. Results indicate that the response of the laminated ribs is essentially the same as that of the ribs with Isodamp at 22.2° C, which is the operating temperature of the conventional ribs. The variation in the impact response of the newly developed laminated ribs in the temperature range of 18.5° C to 26.6° C was less than 10%.
Technical Paper

Driver Demand: Eye Glance Measures

2016-04-05
2016-01-1421
This study investigated driver glances while engaging in infotainment tasks in a stationary vehicle while surrogate driving: watching a driving video recorded from a driver’s viewpoint and projected on a large screen, performing a lane-tracking task, and performing the Tactile Detection Response Task (TDRT) to measure attentional effects of secondary tasks on event detection and response. Twenty-four participants were seated in a 2014 Toyota Corolla production vehicle with the navigation system option. They performed the lane-tracking task using the vehicle’s steering wheel, fitted with a laser pointer to indicate wheel movement on the driving video. Participants simultaneously performed the TDRT and a variety of infotainment tasks, including Manual and Mixed-Mode versions of Destination Entry and Cancel, Contact Dialing, Radio Tuning, Radio Preset selection, and other Manual tasks. Participants also completed the 0-and 1-Back pure auditory-vocal tasks.
Technical Paper

Prediction of the Behaviors of Adhesively Bonded Steel Hat Section Components under Axial Impact Loading

2017-03-28
2017-01-1461
Adhesively bonded steel hat section components have been experimentally studied in the past as a potential alternative to traditional hat section components with spot-welded flanges. One of the concerns with such components has been their performance under axial impact loading as adhesive is far more brittle as compared to a spot weld. However, recent drop-weight impact tests have shown that the energy absorption capabilities of adhesively bonded steel hat sections are competitive with respect to geometrically similar spot-welded specimens. Although flange separation may take place in the case of a specimen employing a rubber toughened epoxy adhesive, the failure would have taken place post progressive buckling and absorption of impact energy.
Technical Paper

Lightweighting of an Automotive Front End Structure Considering Frontal NCAP and Pedestrian Lower Leg Impact Safety Requirements

2016-04-05
2016-01-1520
The present work is concerned with the objective of design optimization of an automotive front end structure meeting both occupant and pedestrian safety requirements. The main goal adopted here is minimizing the mass of the front end structure meeting the safety requirements without sacrificing the performance targets. The front end structure should be sufficiently stiff to protect the occupant by absorbing the impact energy generated during a high speed frontal collision and at the same time it should not induce unduly high impact loads during a low speed pedestrian collision. These two requirements are potentially in conflict with each other; however, there may exist an optimum design solution, in terms of mass of front end structure, that meets both the requirements.
Technical Paper

A Methodology for Prediction of Periprosthetic Injuries in Occupants with TKR Implants in Vehicle Crashes

2016-04-05
2016-01-1529
Periprosthetic fractures refer to the fractures that occur in the vicinity of the implants of joint replacement arthroplasty. Most of the fractures during an automotive frontal collision involve the long bones of the lower limbs (femur and tibia). Since the prevalence of persons living with lower limb joint prostheses is increasing, periprosthetic fractures that occur during vehicular accidents are likely to become a considerable burden on health care systems. It is estimated that approximately 4.0 million adults in the U.S. currently live with Total Knee Replacement (TKR) implants. Therefore, it is essential to study the injury patterns that occur in the long bone of a lower limb containing a total knee prosthesis. The aim of the present study is to develop an advanced finite element model that simulates the possible fracture patterns that are likely during vehicular accidents involving occupants who have knee joint prostheses in situ.
Technical Paper

Race Car Nets for the Control of Neck Forces in Side Impacts

2004-11-30
2004-01-3513
Race car nets have been used for years to keep the drivers head and arms inside the structure of the race car during an accident. Recent testing by GM Racing has shown that a net placed near the driver's shoulder and head on the right side can significantly reduce head excursion and thereby reduce neck tension in a side impact. The reduced neck tension prevents neck injury and basilar skull fracture. The right side net also improves seat stiffness and reduces seat deflection in side impacts.
Technical Paper

Effect of Long-Duration Impact on Head

1972-02-01
720956
Impacts have been analyzed in terms of degree of injury, head injury criterion (HIC), and average acceleration as a function of time for frontal impacts against the following surfaces: 1. Rigid flat surface-fractured cadaver skull. 2. Astroturf-head drop of football-helmeted cadaver. 3. Windshield penetrating impact of a dummy. 4. Airbag-dynamic test by human volunteers. It is concluded that the linear acceleration/time concussion tolerance curve may not exist and that only impacts against relatively stiff surfaces producing impulses with short rise times can be critical. The authors hypothesize that if a head impact does not contain a critical HIC interval of less than 0.015 s, it should be considered safe as far as cerebral concussion is concerned.
Technical Paper

Dynamic Response of the Spine During +Gx Acceleration

1975-02-01
751172
A review of the existing mathematical models of a car occupant in a rear-end crash reveals that existing models inadequately describe the kinematics of the occupant and cannot demonstrate the injury mechanisms involved. Most models concentrate on head and neck motion and have neglected to study the interaction of the occupant with the seat back, seat cushion, and restraint systems. Major deficiencies are the inability to simulate the torso sliding up the seat back and the absence of the thoracic and lumbar spine as deformable, load transmitting members. The paper shows the results of a 78 degree-of-freedom model of the spine, head, and pelvis which has already been validated in +Gz and -Gx acceleration directions. It considers automotive-type restraint systems, seat back, and seat cushions, and the torso is free to slide up the seat back.
Technical Paper

Safety Performance of Asymmetric Windshields

1978-02-01
780900
A comparative study of the safety performance of asymmetric and standard HPR windshields was conducted. The effect of increased interlayer thickness was also quantified. There were four different types of asymmetric windshields which had inner layer thicknesses of 0.8 to 1.5 mm and interlayer thicknesses of 0.76 and 1.14 mm. The experimental program consisted of both full scale sled tests and headform drop tests. A total of 127 vehicular impacts were carried out using a modified Volkswagen Rabbit. The test subject was a 50th percentile Fart 572 anthropomorphic test device. The asymmetric windshields were found to have a lower lacerative potential than that of the standard windshield. The best TLI value of 5.2 was provided by a 0.8 - 0.76 mm windshield at 60 km/h. That for the standard windshield was 7.7 at the same speed. All HIC values were less than 1,000 at 48 km/h.
Technical Paper

Safety Performance Comparison of 30 MIL HPR Laminated and Monolithic Differentially Tempered Windshields

1970-02-01
700427
Conventional 30 mil HPR laminated and wide-zone monolithic tempered windshields are compared on a safety performance basis from the stand-points of occupant injuries from frontal force collisions and injury or loss of control from breakage from high speed external impact of stones. All experiments were conducted with the windshields installed by conventional methods in an automobile. Occupant injury potential as measured by the Severity Index for brain damage at a 30 mph barrier impact simulation was approximately two times as high for the tempered as for the laminated windshields, although only one tempered windshield exceeded the recommended maximum value of 1,000. Severe lacerations resulted in all impacts in which the tempered glass broke. Less severe lacerations were found for the laminated windshield impacts at comparable speeds.
Technical Paper

Safety Performance of a Chemically Strengthened Windshield

1969-02-01
690485
Safety performance of an experimental windshield with a thin, chemically tempered inner pane is compared with the standard windshield and other experimental windshields. The chemically tempered windshield has a penetration velocity of 35 mph compared with 26 mph penetration velocity for the standard windshield and has lower peak head accelerations than other types used in the experiments. The windshield tested produces a bulge on impact, which decelerates the head over a long distance with low accelerations. The bulge or pocket is lined with particles that are less lacerative than the standard annealed glass.
Technical Paper

Safety Performance of Securiflex Windshield

1976-02-01
760807
An improved windshield with a special, thin, plastic inner surface attached to the inner surface of a three layer windshield similar to those used in the United States minimizes lacerations from occupant impact to the windshield during a collision. The plastic coats the sharp edges of the broken glass preventing or minimizing laceration. It was evaluated by comparing its laceration performance with that of a standard windshield in simulated barrier crashes at velocities up to 65 km/h. No lacerations resulted from impact to the Securiflex windshield at Barrier Equivalent Velocities up to 65 km/h. Substantial laceration resulted at velocities above 20 km/h with the standard windshield. It is concluded that the Securiflex windshield essentially eliminates lacerations in the particular vehicle involved at velocities up to at least 65 km/h.
Technical Paper

Safety Comparison of Laminated Glass and Acrylic Glazing in Front Camper Windows

1976-02-01
760808
Children riding on the bed over the cab in campers can be injured in forward force collisions from striking the glazing material and/or being ejected through the opening. The two types of glazing commonly used are acrylic and laminated. A comparison of the performance of the two types of glazing in simulated forward force collisions at velocities up to 30 mph showed the acrylic material to pose threats of neck and back injury and the laminated material to result in lacerations. Ejections occurred with the acrylic that were not present with the laminated windshields when correct glazing techniques were used. With poor installation procedures, ejections occurred in both types of glazing materials. It is concluded that the best way to avoid injury is to prevent the child from riding in the over-the-cab bunk. If the child does ride there, his body axis should be positioned at an angle to the longitudinal axis of the vehicle.
Technical Paper

Study on the Key Preload Performance Parameters of an Active Reversible Preload Seatbelt (ARPS)

2018-04-03
2018-01-1175
In order to provide an improved countermeasure for occupant protection, a new type of active reversible preload seatbelt (ARPS) is presented in this paper. The ARPS is capable of protecting occupants by reducing injuries during frontal collisions. ARPS retracts seatbelt webbing by activating an electric motor attached to the seatbelt retractor. FCW (Forward Collision Warning) and LDW (Lane Departure Warning) provide signals as a trigger to activate the electric motor to retract the seatbelt webbing, thus making the occupant restraint system work more effectively in a crash. It also helps reduce occupant’s forward movement during impact process via braking. Four important factors such as preload force, preload velocity and the length and timing of webbing retraction play influential roles in performance of the ARPS. This paper focuses on studying preload performance of ARPS under various test conditions to investigate effects of the aforementioned factors.
X