Refine Your Search

Topic

Search Results

Journal Article

The Trade-off between Automobile Acceleration Performance, Weight, and Fuel Consumption

2008-06-23
2008-01-1524
This paper evaluates how the fuel consumption of the average new U.S. passenger car will be penalized if engine and vehicle improvements continue to be focused on developing bigger, heavier and more powerful automobiles. We quantify a parameter called the Emphasis on Reducing Fuel Consumption (ERFC) and find that there has been little focus on improving fuel consumption in the U.S. over the past twenty years. In contrast, Europe has seen significantly higher ERFC. By raising the ERFC over the next few decades, we can reduce the average U.S. new car's fuel consumption by up to some 40 percent and cut the light-duty vehicle fleet's fuel use by about a quarter. Achieving substantial fuel use reduction will remain a major challenge if automobile size, weight and power continue to dominate.
Journal Article

A Forward-Looking Stochastic Fleet Assessment Model for Analyzing the Impact of Uncertainties on Light-Duty Vehicles Fuel Use and Emissions

2012-04-16
2012-01-0647
Transport policy research seeks to predict and substantially reduce the future transport-related greenhouse gas emissions and fuel consumption to prevent negative climate change impacts and protect the environment. However, making such predictions is made difficult due to the uncertainties associated with the anticipated developments of the technology and fuel situation in road transportation, which determine the total fuel use and emissions of the future light-duty vehicle fleet. These include uncertainties in the performance of future vehicles, fuels' emissions, availability of alternative fuels, demand, as well as market deployment of new technologies and fuels. This paper develops a methodology that quantifies the impact of uncertainty on the U.S. transport-related fuel use and emissions by introducing a stochastic technology and fleet assessment model that takes detailed technological and demand inputs.
Technical Paper

Combustion Chamber Deposit Effects on Hydrocarbon Emissions from a Spark-Ignition Engine

1997-10-01
972887
A dynamometer-mounted four-cylinder Saturn engine was used to accumulate combustion chamber deposits (CCD), using an additized fuel. During each deposit accumulation test, the HC emissions were continuously measured. The deposit thickness at the center of the piston was measured at the beginning of each day. After the 50 and 35-hour tests, HC emissions were measured with isooctane, benzene, toluene, and xylene, with the deposited engine, and again after the deposits had been cleaned from the engine. The HC emissions showed a rapid rise in the first 10 to 15 hours and stabilization after about 25 hours of deposit accumulation. The HC increase due to CCD accumulation accounted for 10 to 20% of the total engine-out HC emissions from the deposit build-up fuel and 10 to 30% from benzene, isooctane, toluene, and xylene, making CCDs a significant HC emissions source from this engine. The HC emissions stabilized long before the deposit thickness.
Technical Paper

The Importance of Injection System Characteristics on Hydrocarbon Emissions from a Direct-Injection Stratified-Charge Engine

1990-02-01
900609
The effects of injection variability, low velocity fuel injection, and injector orifice size on unburned hydrocarbon emissions were studied in a direct-injection stratified-charge (DISC) engine. The engine incorporated a combustion process similar to the Texaco Controlled Combustion System (TCCS) and was operated with gasoline. The variability in the amount of fuel injected per cycle was found to have a negligible effect on HC emissions. Changing the amount of fuel injected at low velocity at the end of injection impacted the HC emissions by up to 50%. A positive pressure differential between the injection line and the combustion chamber when the injector needle closed resulted in more fuel injected at low velocity and increased HC emissions. High speed single frame photography was used to observe the end of injection. Injectors with smaller orifices had substantially lower HC emissions than the baseline injector.
Technical Paper

Comparative Analysis of Automotive Powertrain Choices for the Next 25 Years

2007-04-16
2007-01-1605
This paper assesses the potential improvement of automotive powertrain technologies 25 years into the future. The powertrain types assessed include naturally-aspirated gasoline engines, turbocharged gasoline engines, diesel engines, gasoline-electric hybrids, and various advanced transmissions. Advancements in aerodynamics, vehicle weight reduction and tire rolling friction are also taken into account. The objective of the comparison is the potential of anticipated improvements in these powertrain technologies for reducing petroleum consumption and greenhouse gas emissions at the same level of performance as current vehicles in the U.S.A. The fuel consumption and performance of future vehicles was estimated using a combination of scaling laws and detailed vehicle simulations. The results indicate that there is significant potential for reduction of fuel consumption for all the powertrains examined.
Technical Paper

The Performance of Future ICE and Fuel Cell Powered Vehicles and Their Potential Fleet Impact

2004-03-08
2004-01-1011
A study at MIT of the energy consumption and greenhouse gas emissions from advanced technology future automobiles has compared fuel cell powered vehicles with equivalent gasoline and diesel internal combustion engine (ICE) powered vehicles [1][2]. Current data regarding IC engine and fuel cell vehicle performance were extrapolated to 2020 to provide optimistic but plausible forecasts of how these technologies might compare. The energy consumed by the vehicle and its corresponding CO2 emissions, the fuel production and distribution energy and CO2 emissions, and the vehicle manufacturing process requirements were all evaluated and combined to give a well-to-wheels coupled with a cradle-to-grave assessment. The assessment results show that significant opportunities are available for improving the efficiency of mainstream gasoline and diesel engines and transmissions, and reducing vehicle resistances.
Technical Paper

Future Light-Duty Vehicles: Predicting their Fuel Consumption and Carbon-Reduction Potential

2001-03-05
2001-01-1081
The transportation sector in the United States is a major contributor to global energy consumption and carbon dioxide emission. To assess the future potentials of different technologies in addressing these two issues, we used a family of simulation programs to predict fuel consumption for passenger cars in 2020. The selected technology combinations that have good market potential and could be in mass production include: advanced gasoline and diesel internal combustion engine vehicles with automatically-shifting clutched transmissions, gasoline, diesel, and compressed natural gas hybrid electric vehicles with continuously variable transmissions, direct hydrogen, gasoline and methanol reformer fuel cell hybrid electric vehicles with direct ratio drive, and battery electric vehicle with direct ratio drive.
Technical Paper

Engine Knock Characteristics at the Audible Level

1991-02-01
910567
The effects of combustion chamber and intake valve deposit build-up on the knocking characteristics of a spark ignition engine were studied. A Chrysler 2.2 liter engine was run continuously for 180 hours to build up intake valve and combustion chamber deposits. In the tests reported here, the gasoline used contained a deposit controlling fuel additive. The engines's octane requirement increased by 10 research octane numbers during this extended engine operating period. At approximately 24 hour intervals during these tests, the engine was audibly knock rated to determine its octane requirement. Cylinder pressure data was collected during knocking conditions to investigate the knocking characteristics of each cylinder, and deposit build-up effects on those statistics. Cylinder-to-cylinder variations in knock statistics were studied. Analysis of the data indicated that some 20 to 40 percent of cycles knock before the knock is audibly detected.
Technical Paper

Real World Performance of an Onboard Gasoline/Ethanol Separation System to Enable Knock Suppression Using an Octane-On-Demand Fuel System

2018-04-03
2018-01-0879
Higher compression ratio and turbocharging, with engine downsizing can enable significant gains in fuel economy but require engine operating conditions that cause engine knock under high load. Engine knock can be avoided by supplying higher-octane fuel under such high load conditions. This study builds on previous MIT papers investigating Octane-On-Demand (OOD) to enable a higher efficiency, higher-boost higher compression-ratio engine. The high-octane fuel for OOD can be obtained through On-Board-Separation (OBS) of alcohol blended gasoline. Fuel from the primary fuel tank filled with commercially available gasoline that contains 10% by volume ethanol (E10) is separated by an organic membrane pervaporation process that produces a 30 to 90% ethanol fuel blend for use when high octane is needed. In addition to previous work, this paper combines modeling of the OBS system with passenger car and medium-duty truck fuel consumption and octane requirements for various driving cycles.
Technical Paper

Effect of In-Cylinder Liquid Fuel Films on Engine-Out Unburned Hydrocarbon Emissions for an SI Engine

2012-09-10
2012-01-1712
An experimental study was performed in a firing SI engine at conditions representative of the warmup phase of operation in which liquid gasoline films were established at various locations in the combustion chamber and the resulting impact on hydrocarbon emissions was assessed. Unique about this study was that it combined, in a firing engine environment, direct visual observation of the liquid fuel films, measurements of the temperatures these films were subjected to, and the determination from gas analyzers of burned and unburned fuel quantities exiting the combustion chamber - all with cycle-level resolution or better. A means of deducing the exhaust hydrocarbon emissions that were due to the liquid fuel films in the combustion chamber was developed. An increase in exhaust hydrocarbon emissions was always observed with liquid fuel films present in the combustion chamber.
Technical Paper

Predicting the Behavior of a Hydrogen-Enhanced Lean-Burn SI Engine Concept

2006-04-03
2006-01-1106
This paper explores the modeling of a lean boosted engine concept. Modeling provides a useful tool for investigating different parameters and comparing resultant emissions and fuel economy performance. An existing architectural concept has been tailored to a boosted hydrogen-enhanced lean-burn SI engine. The simulation consists of a set of Matlab models, part physical and part empirical, which has been developed to simulate a working engine. The model was calibrated with production engine data and experimental data taken at MIT. Combustion and emissions data come from a single cylinder research engine and include changes in air/fuel ratio, load and speed, and different fractions of the gasoline fuel reformed to H2 and CO. The outputs of the model are brake specific NOx emissions and brake specific fuel consumption maps along with cumulative NOx emissions and fuel economy for urban and highway drive cycles.
Technical Paper

Predicting the Effects of Air and Coolant Temperature, Deposits, Spark Timing and Speed on Knock in Spark Ignition Engines

1992-10-01
922324
The prediction of knock onset in spark-ignition engines requires a chemical model for the autoignition of the hydrocarbon fuel-air mixture, and a description of the unburned end-gas thermal state. Previous studies have shown that a reduced chemistry model developed by Keck et al. adequately predicts the initiation of autoignition. However, the combined effects of heat transfer and compression on the state of the end gas have not been thoroughly investigated. The importance of end-gas heat transfer was studied with the objective of improving the ability of our knock model to predict knock onset over a wide range of engine conditions. This was achieved through changing the thermal environment of the end gas by either varying the inlet air temperature or the coolant temperature. Results show that there is significant heating of the in-cylinder charge during intake and a substantial part of the compression process.
Technical Paper

A Model for Converting SI Engine Flame Arrival Signals into Flame Contours

1995-02-01
950109
A model which converts flame arrival times at a head gasket ionization probe, used in a spark-ignition engine, into flame contours has been developed. The head gasket was manufactured at MIT using printed circuit board techniques. It has eight electrodes symmetrically spaced around the circumference (top of cylinder liner) and it replaces the conventional head gasket. The model is based on engine flame propagation rate data taken from the literature. Data from optical studies of S.I. engine combustion or studies utilizing optical fiber or ionization probe diagnostics were analyzed in terms of the apparent flame speed and the entrainment speed (flame speed relative to the fluid ahead of the flame). This gives a scaling relationship between the flame speed and the mass fraction burned which is generic and independent of the chamber shape.
Technical Paper

A Study of Cycle-to-Cycle Variations in SI Engines Using a Modified Quasi-Dimensional Model

1996-05-01
961187
This paper describes the use of a modified quasi-dimensional spark-ignition engine simulation code to predict the extent of cycle-to-cycle variations in combustion. The modifications primarily relate to the combustion model and include the following: 1. A flame kernel model was developed and implemented to avoid choosing the initial flame size and temperature arbitrarily. 2. Instead of the usual assumption of the flame being spherical, ellipsoidal flame shapes are permitted in the model when the gas velocity in the vicinity of the spark plug during kernel development is high. Changes in flame shape influence the flame front area and the interaction of the enflamed volume with the combustion chamber walls. 3. The flame center shifts due to convection by the gas flow in the cylinder. This influences the flame front area through the interaction between the enflamed volume and the combustion chamber walls. 4. Turbulence intensity is not uniform in cylinder, and varies cycle-to-cycle.
Technical Paper

The Contribution of Different Oil Consumption Sources to Total Oil Consumption in a Spark Ignition Engine

2004-10-25
2004-01-2909
As a part of the effort to comply with increasingly stringent emission standards, engine manufacturers strive to minimize engine oil consumption. This requires the advancement of the understanding of the characteristics, sources, and driving mechanisms of oil consumption. This paper presents a combined theoretical and experimental approach to separate and quantify different oil consumption sources in a production spark ignition engine at different speed and load conditions. A sulfur tracer method was used to measure the dependence of oil consumption on engine operating speed and load. Liquid oil distribution on the piston was studied using a Laser-Induced-Fluorescence (LIF) technique. In addition, important in-cylinder parameters for oil transport and oil consumption, such as liner temperatures and land pressures, were measured.
Technical Paper

Mixture Preparation Mechanisms in a Port Fuel Injected Engine

2005-05-11
2005-01-2080
An experimental study was carried out that qualitatively examined the mixture preparation process in port fuel injected engines. The primary variables in this study were intake valve lift, intake valve timing, injector spray quality, and injection timing. A special visualization engine was used to obtain high-speed videos of the fuel-air mixture flowing through the intake valve, as well as the wetting of the intake valve and head in the combustion chamber. Additionally, videos were taken from within the intake port using a borescope to examine liquid fuel distribution in the port. Finally, a simulation study was carried out in order to understand how the various combinations of intake valve lifts and timings affect the flow velocity through the intake valve gap to aid in the interpretation of the videos.
Technical Paper

Photographic and Performance Studies of Diesel Combustion With a Rapid Compression Machine

1974-02-01
740948
Photographic and performance studies with a Rapid Compression Machine at the Massachusetts Institute of Technology have been used to develop insight into the role of mixing in diesel engine combustion. Combustion photographs and performance data were analyzed. The experiments simulate a single fuel spray in an open chamber diesel engine with direct injection. The effects of droplet formation and evaporation on mixing are examined. It is concluded that mixing is controlled by the rate of entrainment of air by the fuel spray rather than the dynamics of single droplets. Experimental data on the geometry of a jet in a quiescent combustion chamber were compared with a two-phase jet model; a jet model based on empirical turbulent entrainment coefficients was developed to predict the motion of a fuel jet in a combustion chamber with swirl. Good agreement between theory and experiment was obtained.
Technical Paper

Simulation Studies of the Effects of Turbocharging and Reduced Heat Transfer on Spark-Ignition Engine Operation

1980-02-01
800289
A computer simulation of the four-stroke spark-ignition engine cycle has been used to examine the effects of turbocharging and reduced heat transfer on engine performance, efficiency and NOx emissions. The simulation computes the flows into and out of the engine, calculates the changes in thermodynamic properties and composition of the unburned and burned gas mixtures within the cylinder through the engine cycle due to work, heat and mass transfers, and follows the kinetics of NO formation and decomposition in the burned gas. The combustion process is specified as an input to the program through use of a normalized rate of mass burning profile. From this information, the simulation computes engine power, fuel consumption and NOx emissions. Wide-open-trottle predictions made with the simulation were compared with experimental data from a 5.7ℓ naturally-aspirated and a 3.8ℓ turbocharged production engine.
Technical Paper

Flow in the Piston-Cylinder-Ring Crevices of a Spark-Ignition Engine: Effect on Hydrocarbon Emissions, Efficiency and Power

1982-02-01
820088
The flow into and out of the piston top-land crevice of a spark-ignition engine has been studied, using a square-cross-section single-cylinder engine with two parallel quartz glass walls which permit optical access to the entire cylinder volume. Schlieren short-time exposure photographs and high speed movies were used to define the essential features of this flow. The top-land crevice and the regions behind and between the rings consist of volumes connected through the ring gaps. A system model of volumes and orifices was therefore developed and used to predict the flow into and out of the crevice regions between the piston, piston rings and cylinder wall.
Technical Paper

The Effect of Chamber Geometry on Spark-Ignition Engine Combustion

1983-02-01
830334
The way In which combustion chamber geometry affects combustion in SI engines was studied using a quasi-diraensional cycle simulation. Calculations were performed to investigate the following questions: (i) the sensitivity of geometric effects on combustion to engine operating conditions; (ii) the differences in burn duration between ten chamber geometries and spark plug locations; and (iii) the relative merits of improved chamber design and amplified turbulence as means to reduce burn duration. The results from these studies are presented and discussed.
X