Refine Your Search

Topic

Search Results

Viewing 1 to 18 of 18
Technical Paper

Hardware-in-the-Loop, Traffic-in-the-Loop and Software-in-the-Loop Autonomous Vehicle Simulation for Mobility Studies

2020-04-14
2020-01-0704
This paper focuses on finding and analyzing the relevant parameters affecting traffic flow when autonomous vehicles are introduced for ride hailing applications and autonomous shuttles are introduced for circulator applications in geo-fenced urban areas. For this purpose, different scenarios have been created in traffic simulation software that model the different levels of autonomy, traffic density, routes, and other traffic elements. Similarly, software that specializes in vehicle dynamics, physical limitations, and vehicle control has been used to closely simulate realistic autonomous vehicle behavior under such scenarios. Different simulation tools for realistic autonomous vehicle simulation and traffic simulation have been merged together in this paper, creating a realistic simulator with Hardware-in-the-Loop (HiL), Traffic-in-the-Loop (TiL), and Software in-the-Loop (SiL) simulation capabilities.
Technical Paper

Cooperative Estimation of Road Grade Based on Multidata Fusion for Vehicle Platoon with Optimal Energy Consumption

2020-04-14
2020-01-0586
The platooning of connected automated vehicles (CAV) possesses the significant potential of reducing energy consumption in the Intelligent Transportation System (ITS). Moreover, with the rapid development of eco-driving technology, vehicle platooning can further enhance the fuel efficiency by optimizing the efficiency of the powertrain. Since road grade is a main factor that affects the energy consumption of a vehicle, the estimation of the road grade with high accuracy is the key factor for a connected vehicle platoon to optimize energy consumption using vehicle-to-vehicle (V2V) communication. Commonly, the road grade is quantified by single consumer grade global positioning system (GPS) with the geodetic height data which is rough and in the meter-level, increasing the difficulty of precisely estimating the road grade.
Technical Paper

The Effects of Varying Penetration Rates of L4-L5 Autonomous Vehicles on Fuel Efficiency and Mobility of Traffic Networks

2020-04-14
2020-01-0137
With the current drive of automotive and technology companies towards producing vehicles with higher levels of autonomy, it is inevitable that there will be an increasing number of SAE level L4-L5 autonomous vehicles (AVs) on roadways in the near future. Microscopic traffic simulators that simulate realistic traffic flow are crucial in studying, understanding and evaluating the fuel usage and mobility effects of having a higher number of autonomous vehicles (AVs) in traffic under realistic mixed traffic conditions including both autonomous and non-autonomous vehicles. In this paper, L4-L5 AVs with varying penetration rates in total traffic flow were simulated using the microscopic traffic simulator Vissim on urban, mixed and freeway roadways. The roadways used in these simulations were replicas of real roadways in and around Columbus, Ohio, including an AV shuttle routes in operation.
Technical Paper

Performance Evaluation of the Pass-at-Green (PaG) Connected Vehicle V2I Application

2020-04-14
2020-01-1380
In recent years, the trend in the automotive industry has been favoring the reduction of fuel consumption in vehicles with the help of new and emerging technologies, such as Vehicle to Infrastructure (V2I), Vehicle to Vehicle (V2V) and Vehicle to Everything (V2X) communication and automated driving capability. As the world of transportation gets more and more connected through these technologies, the need to implement algorithms with V2I capability is amplified. In this paper, an algorithm called Pass at Green, utilizing V2I and vehicle longitudinal automation to modify the speed profile of a mid-size generic vehicle to decrease fuel consumption has been studied. Pass at Green (PaG) uses Signal Phase and Timing (SPaT) information acquired from upcoming traffic lights, which are the current phase of the upcoming traffic light and remaining time that the phase stays active.
Technical Paper

Steer-by-Wire Control of a Light Commercial Vehicle Using a Hardware-in-the-Loop Test Setup

2007-10-30
2007-01-4198
This paper is on the design of a steer-by-wire system for a light commercial vehicle. A hardware-in-the-loop simulation test rig with the actual rack and pinion mechanism of the light commercial vehicle under study was built for this purpose. The steer-by-wire actuator can be placed on either the second pinion, the first pinion or both in the double pinion steering test system used. The hardware and geometry of the steering test rig are identical to the implementation of the steering system in the test vehicle. Unnecessary and expensive road testing is avoided with this approach as most problems are identified and solved in the hardware-in-the-loop simulation phase conducted in the laboratory where the steering subsystem and its controller exist as hardware and the rest of the vehicle exist as a software model running in real time. Hardware-in-the-loop simulation results show the effectiveness of the proposed controller design in tracking desired steering dynamics.
Technical Paper

Transient Active BodyControl of a Ford Transit Connect using Semi-active Suspensions

2007-10-30
2007-01-4268
This paper presents the development of a transient active control (TABC) system for the Ford Transit Connect light commercial vehicle using semi active suspensions. The control objective is to improve the ride comfort and road holding together with achieving roll and pitch stability using four semi active suspension dampers, hence called transient active body control. Semi-active control algorithms such as sky-hook, ground-hook and hybrid are applied to each suspension while the roll and pitch stabilizing controllers are designed separately and interfere with the local semi-active controllers through a supervisory control algorithm, if necessary. Simulation and experimental results are presented to demonstrate the effectiveness of the proposed technique.
Technical Paper

Electric Regenerative Power Assisted Brake Algorithm for a Front and Rear Wheel Drive Parallel Hybrid Electric Commercial Van

2008-10-07
2008-01-2606
There is an increasing trend in the worldwide automotive area towards developing hybrid electric vehicles as an intermediate solution to fulfill the new, more stringent pollutant emission level requirements set by governments. Conversion of braking energy into electrical energy stored in the battery through regenerative braking is an important aspect of hybrid electric vehicles that increases their fuel efficiency. This paper presents an electric regenerative power assisted brake algorithm developed to enhance energy efficiency of a front and rear wheel drive parallel hybrid electric commercial vehicle. The commercial vehicle used in this study is a second generation research prototype Ford Transit Parallel Hybrid Electric Van. The existing hydraulic brake system of this van was not altered for reasons of safety and reliability in the case of a problem with regenerative barking.
Technical Paper

Maximizing Overall Efficiency Strategy (MOES) for Power Split Control of a Parallel Hybrid Electric Vehicle

2008-10-07
2008-01-2682
In a Hybrid Electric Vehicle (HEV), the main aim is to decrease the fuel consumption and emissions without significant loss of driving performance. Maximizing Overall Efficiency Strategy (MOES) algorithm, presented here, distributes the power demand among the available paths to the wheels to improve fuel economy. In MOES, the vehicle is considered as a system whose input and output are power capability of consumed fuel and actual power transferred to the road, respectively. The aim of the strategy is to maximize the overall efficiency of the vehicle determined as the ratio of output power to input power. The control algorithm and driver model were prepared within Simulink and used to drive the Carmaker model of the vehicle which is a Ford Transit hybrid electric research prototype van. Simulations were carried out in 3 modes of the vehicle; conventional mode, regenerative braking only mode and full MOES mode to analyze the role of optimization better.
Technical Paper

Stability Enhancement of a Light Commercial Vehicle Using Active Steering

2006-04-03
2006-01-1181
This paper is on the application of electric power assisted steering and yaw stability control to a light commercial vehicle. An active steering system is developed and used for both purposes. Steering system and vehicle dynamics models are derived and built in Simulink and their response is compared to that of a validated Adams/Chassis model of the vehicle. A boost curve type electric power assisted steering controller and a yaw stability control system based on the model regulator steering controller are developed. Their performance is demonstrated through simulation results. A steering test rig built for safely developing steering controllers in a hardware-in-the-loop setting is introduced. Details of the experimental vehicle with active steering, built to test the concepts developed in the paper is also presented.
Technical Paper

Optimization of Nonlinear Spring and Damper Characteristics for Vehicle Ride and Handling Improvement

2008-10-07
2008-01-2669
In this paper, the optimum linear/nonlinear spring and linear/nonlinear damper force versus displacement and force versus velocity characteristic functions, respectively, are determined using simple lumped parameter models of a quarter car front independent suspension and a half car rear solid axle suspension of a light commercial vehicle. The complexity of a nonlinear function optimization problem is reduced by determining the shape a priori based on typical shapes supplied by the car manufacturer and then scaling it up or down in the optimization process. The vehicle ride and handling responses are investigated considering models of increased complexity. The linear and nonlinear optimized spring characteristics are first obtained using lower complexity lumped parameter models. The commercial vehicle dynamics software Carmaker is then used in the optimization as the higher complexity, more realistic model.
Technical Paper

Localization and Perception for Control and Decision Making of a Low Speed Autonomous Shuttle in a Campus Pilot Deployment

2018-04-03
2018-01-1182
Future SAE Level 4 and Level 5 autonomous vehicles will require novel applications of localization, perception, control and artificial intelligence technology in order to offer innovative and disruptive solutions to current mobility problems. This paper concentrates on low speed autonomous shuttles that are transitioning from being tested in limited traffic, dedicated routes to being deployed as SAE Level 4 automated driving vehicles in urban environments like college campuses and outdoor shopping centers within smart cities. The Ohio State University has designated a small segment in an underserved area of campus as an initial autonomous vehicle (AV) pilot test route for the deployment of low speed autonomous shuttles. This paper presents initial results of ongoing work on developing solutions to the localization and perception challenges of this planned pilot deployment.
Technical Paper

Use of Hardware in the Loop (HIL) Simulation for Developing Connected Autonomous Vehicle (CAV) Applications

2019-04-02
2019-01-1063
Many smart cities and car manufacturers have been investing in Vehicle to Infrastructure (V2I) applications by integrating the Dedicated Short-Range Communication (DSRC) technology to improve the fuel economy, safety, and ride comfort for the end users. For example, Columbus, OH, USA is placing DSRC Road Side Units (RSU) to the traffic lights which will publish traffic light Signal Phase and Timing (SPaT) information. With DSRC On Board Unit (OBU) equipped vehicles, people will start benefiting from this technology. In this paper, to accelerate the V2I application development for Connected and Autonomous Vehicles (CAV), a Hardware in the Loop (HIL) simulator with DSRC RSU and OBU is presented. The developed HIL simulator environment is employed to implement, develop and evaluate V2I connected vehicle applications in a fast, safe and cost-effective manner.
Technical Paper

Virtual and Real Data Populated Intersection Visualization and Testing Tool for V2X Application Development

2021-04-06
2021-01-0164
Connected Vehicle (CV) technologies have been progressing rapidly in the US. The capability afforded by Vehicle-to-Vehicle (V2V) communication improves situational awareness and provides advantages for many of the traffic problems caused by reduced visibility or No-Line-of-Sight situations, being useful for both autonomous and non-autonomous driving. Additionally, with the traffic light Signal Phase and Timing (SPaT) and Map Data (MAP) information and other advisory information provided with Vehicle-to-Infrastructure (V2I) communication, outcomes which benefit the driver in the long run, such as reducing fuel consumption with speed regulation or decreasing traffic congestion through optimal speed advisories, providing red light violation warning messages and intersection motion assist messages for collision-free intersection maneuvering are all made possible.
Technical Paper

Predicting Desired Temporal Waypoints from Camera and Route Planner Images using End-To-Mid Imitation Learning

2021-04-06
2021-01-0088
This study is focused on exploring the possibilities of using camera and route planner images for autonomous driving in an end-to-mid learning fashion. The overall idea is to clone the humans’ driving behavior, in particular, their use of vision for ‘driving’ and map for ‘navigating’. The notion is that we humans use our vision to ‘drive’ and sometimes, we also use a map such as Google/Apple maps to find direction in order to ‘navigate’. We replicated this notion by using end-to-mid imitation learning. In particular, we imitated human driving behavior by using camera and route planner images for predicting the desired waypoints and by using a dedicated control to follow those predicted waypoints. Besides, this work also places emphasis on using minimal and cheaper sensors such as camera and basic map for autonomous driving rather than expensive sensors such Lidar or HD Maps as we humans do not use such sophisticated sensors for driving.
Technical Paper

Development of Virtual Fuel Economy Trend Evaluation Process

2019-04-02
2019-01-0510
With the advancement of the autonomous vehicle development, the different possibilities of improving fuel economy have increased significantly by changing the driver or powertrain response under different traffic conditions. Development of new fuel-efficient driving strategies requires extensive experiments and simulations in traffic. In this paper, a fuel efficiency simulator environment with existing simulator software such as Simulink, Vissim, Sumo, and CarSim is developed in order to reduce the overall effort required for developing new fuel-efficient algorithms. The simulation environment is created by combining a mid-sized sedan MATLAB-Simulink powertrain model with a realistic microscopic traffic simulation program. To simulate the traffic realistically, real roads from urban and highway sections are modeled in the simulator with different traffic densities.
Technical Paper

Connected UAV and CAV Coordination for Improved Road Network Safety and Mobility

2021-04-06
2021-01-0173
Having connectivity among ground vehicles brings about benefits in fuel economy improvement, traffic mobility enhancement and undesired emission reductions. On the other hand, Unmanned Aerial Vehicles (UAV) have proven to help in getting aerial data to end users in an affordable manner. When UAVs are equipped with cameras, they can get information about the terrain they are flying over. Moreover, using Vehicle-to-Everything (V2X) communication technologies, it is possible to form a communication link between UAVs and the connected ground vehicle networks comprising of Connected and Autonomous vehicles (CAVs). To investigate and exploit the potential benefits and use cases of a broad vehicle network, a microscopic traffic simulator modified previously by our group with the addition of nearby UAVs is used to integrate simulated Connected UAVs flying above a realistic simulation of heterogeneous traffic flow containing both CAVs and non-CAVs.
Technical Paper

Drive Scenario Generation Based on Metrics for Evaluating an Autonomous Vehicle Controller

2018-04-03
2018-01-0034
An important part of automotive driving assistance systems and autonomous vehicles is speed optimization and traffic flow adaptation. Vehicle sensors and wireless communication with surrounding vehicles and road infrastructure allow for predictive control strategies taking near-future road and traffic information into consideration to improve fuel economy. For the development of autonomous vehicle speed control algorithms, it is imperative that the controller can be evaluated under different realistic driving and traffic conditions. Evaluation in real-life traffic situations is difficult and experimental methods are necessary where similar driving conditions can be reproduced to compare different control strategies. A traditional approach for evaluating vehicle performance, for example fuel consumption, is to use predefined driving cycles including a speed profile the vehicle should follow.
Technical Paper

Dynamic Speed Harmonization (DSH) as Part of an Intelligent Transportation System (ITS)

2023-04-11
2023-01-0718
In the last decade, the accelerated advancements in manufacturing techniques and material science enabled the automotive industry to manufacture commercial vehicles at more affordable rates. This, however, brought about roadways having to accommodate an ever-increasing number of vehicles every day. However, some roadways, during specific hours of the day, had already been on the brink of reaching their capacity to withstand the number of vehicles travelling on them. Hence, overcrowded roadways create slow traffic, and sometimes, bottlenecks. In this paper, a Dynamic Speed Harmonization (DSH) algorithm that regulates the speed of a vehicle to prevent it from being affected by bottlenecks has been presented. First, co-simulations were run between MATLAB Simulink and CarSim to test different deceleration profiles.
X