Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Design Analysis of High Power Density Additively Manufactured Induction Motor

2016-09-20
2016-01-2061
Induction machines (IM) are considered work horse for industrial applications due to their rugged, reliable and inexpensive nature; however, their low power density restricts their use in volume and weight limited environments such as an aerospace, traction and propulsion applications. Given recent advancements in additive manufacturing technologies, this paper presents opportunity to improve power density of induction machines by taking advantage of higher slot fill factor (SFF) (defined as ratio of bare copper area to slot area) is explored. Increase in SFF is achieved by deposition of copper in much more compact way than conventional manufacturing methods of winding in electrical machines. Thus a design tradeoff study for an induction motor with improved SFF is essential to identify and highlight the potentials of IM for high power density applications and is elaborated in this paper.
Journal Article

Mechanical Behavior and Failure Mechanism of Nb-Clad Stainless Steel Sheets

2009-04-20
2009-01-1393
Because niobium-clad 304L stainless steel sheets are considered for use as bipolar plates in polymer electrolyte membrane (PEM) fuel cells, their mechanical behavior and failure mechanism are important to be examined. As-rolled and annealed specimens were tested in tension, bending and flattening. The effects of annealing temperature and time on the mechanical behavior and failure mechanism were investigated. Micrographic analyses of bent and flattened specimens showed that the as-rolled specimens have limited ductility and that the annealed specimens can develop an intermetallic layer of thickness of a few microns. The annealed specimens failed due to the breakage of intermetallic layer causing localized necking and the subsequent failure of Nb layer. The springback angles of the as-rolled and annealed specimens were also obtained from guided-bend tests.
Journal Article

Analysis of the Correlation Between Engine-Out Particulates and Local Φ in the Lift-Off Region of a Heavy Duty Diesel Engine Using Raman Spectroscopy

2009-04-20
2009-01-1357
The local equivalence ratio, Φ, was measured in fuel jets using laser-induced spontaneous Raman scattering in an optical heavy duty diesel engine. The measurements were performed at 1200 rpm and quarter load (6 bar IMEP). The objective was to study factors influencing soot formation, such as gas entrainment and lift-off position, and to find correlations with engine-out particulate matter (PM) levels. The effects of nozzle hole size, injection pressure, inlet oxygen concentration, and ambient density at TDC were studied. The position of the lift–off region was determined from OH chemiluminescence images of the flame. The liquid penetration length was measured with Mie scattering to ensure that the Raman measurement was performed in the gaseous part of the spray. The local Φ value was successfully measured inside a fuel jet. A surprisingly low correlation coefficient between engine-out PM and the local Φ in the reaction zone were observed.
Journal Article

Entrainment Waves in Diesel Jets

2009-04-20
2009-01-1355
Recent measurements in transient diesel jets have shown that fuel in the wake of the injection pulse mixes with ambient gases more rapidly than in a steady jet. This rapid mixing after the end of injection (EOI) can create fuel-lean regions near the fuel injector. These lean regions may not burn to completion for conditions where autoignition occurs after EOI, as is typical of low-temperature combustion (LTC) diesel engines. In this study, transient diesel jets are analyzed using a simple one-dimensional jet model. The model predicts that after EOI, a region of increased entrainment, termed the “entrainment wave,” travels downstream at twice the initial jet propagation rate. The entrainment wave increases mixing by up to a factor of three. This entrainment wave is not specific to LTC jets, but rather it is important for both conventional diesel combustion and LTC conditions.
Journal Article

SCR Catalyst Systems Optimized for Lightoff and Steady-State Performance

2009-04-20
2009-01-0901
A laboratory study was performed to optimize a zoned configuration of an iron (Fe) SCR catalyst and a copper (Cu) SCR catalyst in order to provide high NOx conversion at lean A/F ratios over a broad range of temperature for diesel and lean-burn gasoline applications. With an optimized space velocity of 8,300 hr-1, a 67% (by volume) Fe section followed by a 33% Cu section provided at least 80% NOx conversion from approximately 230°C to 640°C when evaluated with 500 ppm NO and NH3. To improve the lean lightoff performance of the SCR catalyst system during a cold start, a Cu SCR catalyst that was 1/4 as long as the rear Cu SCR catalyst was placed in front of the Fe SCR catalyst. When evaluated with an excess of NH3 (NH3/NO ratio of 2.2), the Cu+Fe+Cu SCR system had significantly improved lightoff performance relative to the Fe+Cu SCR system, although the front Cu SCR catalyst did decrease the NOx conversion at temperatures above 475°C by oxidizing some of the NH3 to N2 or NO.
Journal Article

The Poisoning and Desulfation Characteristics of Iron and Copper SCR Catalysts

2009-04-20
2009-01-0900
A laboratory study was performed to assess the effects of SO2 poisoning on the NOx conversion of iron (Fe) and copper (Cu) SCR catalysts. Thermally aged samples of the catalysts were poisoned with SO2 under lean conditions. At various times during the poisonings, the samples were evaluated for NOx conversion with NO and NH3 using lean temperature ramps. The low temperature NOx conversions of both catalysts decreased by 10 to 20% after 1 to 4 hours of poisoning but were stable with continued exposure to the SO2. The poisoned Cu SCR catalyst could be desulfated repeatedly with 5 minutes of lean operation at 600°C. Initially, the poisoned Fe SCR catalyst required 5 minutes of lean operation at 750°C to recover its maximum NOx conversion.
Journal Article

Aspects of NVH Integration in Hybrid Vehicles

2009-05-19
2009-01-2085
NVH refinement is an important aspect of the powertrain development and vehicle integration process. The depletion of fossil-based fuels and increase in price of gasoline have prompted most vehicle manufacturers to embrace propulsion technologies with varying degrees and types of hybridization. Many different hybrid vehicle systems are either on the market, or under development, even up to all-electric vehicles. Each hybrid vehicle configuration brings unique NVH challenges that result from a variety of sources. This paper begins with an introductory discussion of hybrid propulsion technologies and associated unique vehicle NVH challenges inherent in the operation of such hybrid vehicles. Following this, the paper outlines a two-dimensional landscape of typical customer vehicle maneuvers mapped against hybrid electric vehicle (HEV) operational modes.
Journal Article

Development Testing of a High Differential Pressure (HDP) Water Electrolysis Cell Stack for the High Pressure Oxygen Generating Assembly (HPOGA)

2009-07-12
2009-01-2346
The International Space Station (ISS) requires advanced life support to continue its mission as a permanently-manned space laboratory and to reduce logistic resupply requirements as the Space Shuttle retires from service. Additionally, as humans reach to explore the moon and Mars, advanced vehicles and extraterrestrial bases will rely on life support systems that feature in-situ resource utilization to minimize launch weight and enhance mission capability. An obvious goal is the development of advanced systems that meet the requirements of both mission scenarios to reduce development costs by deploying common modules. A high pressure oxygen generating assembly (HPOGA) utilizing a high differential pressure (HDP) water electrolysis cell stack can provide a recharge capability for the high pressure oxygen storage tanks on-board the ISS independently of the Space Shuttle as well as offer a pathway for advanced life support equipment for future manned space exploration missions.
Journal Article

Thermal Considerations for Meeting 20°C and Stringent Temperature Gradient Requirements of IXO SXT Mirror Modules

2009-07-12
2009-01-2391
The Soft X-Ray Telescope (SXT) is an instrument on the International X-Ray Observatory (IXO). Its flight mirror assembly (FMA) has a single mirror configuration that includes a 3.3 m diameter and 0.93 m tall mirror assembly. It consists of 24 outer modules, 24 middle modules and 12 inner modules. Each module includes more than 200 mirror segments. There are a total of nearly 14, 000 mirror segments. The operating temperature requirement of the SXT FMA is 20°C. The spatial temperature gradient requirement between the FMA modules is ±1°C or smaller. The spatial temperature gradient requirement within a module is ±0.5°C. This paper presents thermal design considerations to meet these stringent thermal requirements.
Journal Article

Developing Abrasion Test Standards for Evaluating Lunar Construction Materials

2009-07-12
2009-01-2377
Operational issues encountered by Apollo astronauts relating to lunar dust were catalogued, including material abrasion that resulted in scratches and wear on spacesuit components, ultimately impacting visibility, joint mobility and pressure retention. Standard methods are being developed to measure abrasive wear on candidate construction materials to be used for spacesuits, spacecraft, and robotics. Calibration tests were conducted using a standard diamond stylus scratch tip on the common spacecraft structure aluminum, Al 6061-T6. Custom tips were fabricated from terrestrial counterparts of lunar minerals for scratching Al 6061-T6 and comparing to standard diamond scratches. Considerations are offered for how to apply standards when selecting materials and developing dust mitigation strategies for lunar architecture elements.
Journal Article

Development of Flax Fibre Reinforced Biocomposites for Potential Application for Automotive Industries

2009-10-06
2009-01-2867
{ Natural fibre-reinforced composite has the potential to replace current materials used for automotive industrial applications. Oilseed flax fibre could be used as reinforcement for composites because it is readily available, environmentally friendly and possesses good mechanical properties. In this research, oilseed flax fibre reinforced-LLDPE and -HDPE biocomposites were developed through extrusion and injection molding. The flax fibre was chemically treated to improve the bond between the fibre and polymer. Flax fibre was mixed with low linear density polyethylene (LLDPE) and high density polyethylene (HDPE) with fibre content varying from 10 to 30% by mass and processed by extrusion and injection molding to biocomposites. The mechanical properties, surface properties, and thermal properties of biocomposites were measured to analyze the treatment and processing effect and to compare the effect of different flax fibre concentrations on the biocomposites.
Journal Article

Standardization of Graphics for Service Information and Translation Expense Reduction

2009-10-06
2009-01-2857
The cost of human natural language translation of Service Information, Assembly Instructions, Training Materials, Operator Manuals and other similar documents is a major expense for manufacturers. One translation avoidance method involves replacing most of a document’s text with still and/or animated graphics. While the graphics with minimum text concept has savings potential, clarity of communication must be maintained for widespread application of this technique. The necessary clarity should be achieved if standards are established for the symbols and graphical conventions used. This paper provides an example of a repair procedure documented using the graphics with minimum text paradigm, describes many of the anticipated standards and provides an update on the progress towards achieving a standard development project.
Journal Article

Stability Analysis of a Disc Brake with Piezoelectric Self-Sensing Technique

2009-10-11
2009-01-3034
Piezoelectric self-sensing allows to measure frequency response functions of dynamical systems with one single piezoelectric element. This piezoceramics is used as actuator and sensor simultaneously. In this study, a model-based piezoelectric self-sensing technique is presented to obtain potential squealing frequencies of an automotive disc brake. The frequency-response function of the brake system is obtained during operation by measuring the current flowing through the piezoelectric element while the piezoelectric element is driven by a harmonic voltage signal with constant amplitude. The current flow is composed of the part which is required to drive the piezoelectric element as an actuator and a second part which is the sensor signal that is proportional to the vibration amplitude of the attached mechanical system. Typically the first part is dominant and the influence of the mechanical system is marginal.
Journal Article

Effects of Chemical Components and Manufacturing Process of Cast Iron Brake Disc on its Resonant Frequency Variation

2009-10-11
2009-01-3030
Many engineers have been working to reduce brake noise in many ways for a long time. So far, a progress has been made in preventing and predicting brake noise. Nevertheless, there are some discrepancies of brake noise generation propensity between testing for the prototype and the production. As known in general, the reason for this unpredicted brake noise occurrence in production is partly due to the variation of the resonant frequency, material and the other unpredictable or unmanageable variations of the components in a brake system. In this paper, effects of chemical components and casting process of gray iron brake disc on its resonant frequency variation have been studied. Especially this paper is focused on the variation in material aspects and manufacturing parameters during disc casting in usual production condition. And their effects are investigated by the variation of out-of-plane modal resonant frequency.
Journal Article

Genesis of the Third-Body at the Pad-Disc Interface: Case Study Of Sintered Metal Matrix Composite Lining Material

2009-10-11
2009-01-3053
During braking, third-body flows and layers govern friction mechanisms, which are fully responsible of the friction coefficient and wear. In the context of development of brake friction pairs, the involved tribological circuit has to be well understood and mastered. This paper concerns a sintered metal matrix composite used for TGV very high speed train. A series of low-energy stop brakings allows a detailed study of the third-body formation at the pad-disc contact. The pin surface is observed after each test. The evolution of the rubbing-area expansion all along the series is explained, and the friction behaviour, typical of the studied friction material, is related to the formation of a well-established third body at the pad-disc interface.
Journal Article

Improved Accuracy of Unguided Articulated Robots

2009-11-10
2009-01-3108
The effectiveness of serial link articulated robots in aerospace drilling and fastening is largely limited by positional accuracy. Unguided production robotic systems are practically limited to +/-0.5mm, whereas the majority of aerospace applications call for tolerances in the +/-0.25mm range. The precision with which holes are placed on an aircraft structure is affected by two main criteria; the volumetric accuracy of the positioner, and how the system is affected when an external load is applied. Production use and testing of off-the-shelf robots has highlighted the major contributor to reduced stiffness and accuracy as being error ahead of the joint position feedback such as backlash and belt stretch. These factors affect the omni-directional repeatability, thus limiting accuracy, and also contribute to deflection of the tool point when process forces are applied.
Journal Article

Compact Fixturing Based on Magneto-rheological Fluids for Aeronautic Stringers Milling

2009-11-10
2009-01-3132
The paper explains the compact fixturing based on magneto-rheological (MR) fluids that have been designed and validated for aeronautic stringers milling. The MR fluid based tooling developed is flexible and reconfigurable as it can be adapted to different profile's lengths and sections and it is able to fix compliant workpieces without reference faces as the MR fluid adapts to the outer shape of each profile. The MR fluid based tooling is suitable to hold non-magnetic materials such as aluminum and also materials that do not admit high clamping forces, such as titanium, because they will appear as deformation after machining due to the memory effect of titanium. The MR fluid based tooling has been tested in a machine environment under real machining conditions and promising results have been obtained.
Journal Article

The Influence of Vibration on Friction

2009-10-11
2009-01-3015
This paper summarizes results from the author's work on friction in dry sliding contacts in the presence of vibration. A number of idealized models of smooth and rough contacts are examined. It is shown that vibration can cause up to a 10% reduction in average friction even with continuous contact. A larger reduction in friction occurs when there is intermittent contact loss. This is found to be true for both elastic and plastic contacts, and for adhesive and plowing mechanisms of friction. The results of this work are compared and validated with measurements from experiments. The results presented are fundamental, but applicable to machine components with contacts including brake systems.
Journal Article

Tool Wear Compensation

2009-11-10
2009-01-3216
This paper describes the principles of a new method to compensate for tool wear when drilling in complex materials such as Carbon Fibre Reinforced Plastics (CFRP), Carbon Fibre Reinforced Plastics / Titanium (CFRP/Ti) and Carbon Fibre Reinforced Plastics / Alloy (CFRP/AI) stacks. A reliable and repeatable hole quality is essential, especially in automatic drilling applications with robots or gantries. The method combines the unique feature to dynamically adjust the drilling diameter in very small steps in an Orbital drilling End-effector and a new type of software algorithm to predict and compensate for the tool wear in different materials. With this method a large number of holes can be drilled without changing the cutting tool, and a Cpk value of more than 2,5 can be achieved.
Journal Article

Assembly Simulation of Riveting Process

2009-11-10
2009-01-3215
The presented paper introduces the new software complex aimed at simulation of the riveting process as applied to aircraft parts. The software complex implements the novel mathematical model based on minimization of the potential energy. The paper gives the detailed description of the mathematical model and particularizes the main features of the software. The physical and numerical tests aimed at validation of the software are also described in the paper.
X