Refine Your Search

Topic

Author

Search Results

Standard

Taxonomy & Definitions for Operational Design Domain (ODD) for Driving Automation Systems

2021-07-15
WIP
J3259
Per SAE J3016 (2021), the Operational Design Domain (ODD) for a driving automation system is defined as “Operating conditions under which a given driving automation system, or feature thereof, is specifically designed to function, including, but not limited to, environmental, geographical, and time-of-day restrictions, and/or the requisite presence or absence of certain traffic or roadway characteristics.”; in short the ODD defines the limits within which the driving automation system is designed to operate, and as such, will only operate when the parameters described within the ODD are satisfied.. This information Report serves to provide terminology, definitions and taxonomy for use in describing an ODD and respective elements for a driving automation system. This classification and definition of a harmonized set of ODD elements is based on the collection and analysis of existing information from multiple sources.
Standard

J2602DA. Digital Annex defining LIN Supplier IDs for ISO 17987

2015-12-10
WIP
J2602DA
This document is a Digital Annex defining LIN Supplier IDs for ISO 17987. New LIN Supplier ID requested will be reviewed by the J2602 Task Force and then the approved IDs will be added to the J2602DA to record Supplier contact details.
Standard

VHDL-AMS Statistical Analysis Packages

2006-10-23
CURRENT
J2748_200610
This document specifies the interface and the behavior of the VHDL-AMS packages for use in modeling statistical behavior. These packages are useful in defining the statistical variation of parameters of electrical, electronic, and mechatronic components and sub-systems. These can then be used with simulation tools to analyze the performance and reliability of systems composed of these components and sub-systems. Providing a standard definition of the package interfaces and their behavior is intended to facilitate the exchange of models between component and system manufacturers and the use of different CAE simulation tools. The SAE statistical package supports the statistical modeling of design parameters subject to tolerances for designs described using the VHDL or VHDL-AMS languages.
Standard

PMODE for In-Vehicle Networks

2001-12-19
CURRENT
J2590_200112
This SAE Recommended Practice describes the power mode requirements for in-vehicle networks that conform to the Automotive Multimedia Interface Collaboration (AMI-C) specifications. These networks include, but are not limited to, the IDB-C (SAE J2366), IDB-1394, and MOST. This version of the document covers primarily IDB-C and may be revised when the PMODE requirements for the other networks are more fully developed by AMI-C.
Standard

Survey of Known Protocols

1993-04-01
HISTORICAL
J2056/2_199304
This SAE Information Report is a summary comparison of existing protocols found in manufacturing, automotive, aviation, military, and computer applications which provide background or may be applicable for Class C application. The intent of this report is to present a summary of each protocol, not an evaluation. This is not intended to be a comprehensive review of all applicable protocols. The form for evaluation of a protocol exists in this paper and new protocols can be submitted on this form to the committee for consideration in future revisions of this report. This report contains a table which provides a side-by-side comparison of each protocol considered. The subsequent section provides a more detailed examination of the protocol attributes. Many of the protocols do not specify a method for one or more of the criteria. In these circumstances 'under defined' or 'not specified' will appear under the heading.
Standard

Combination 11 Conductors and Two Pairs ECBS Cable

2020-02-24
CURRENT
J2742_202002
This SAE standard establishes the minimum construction and performance requirements for a combination cable consisting of 11 conductors and two twisted pairs for use on trucks, trailers, and dollies for 12 VDC nominal applications in conjunction with SAE J2691 (15 pole connectors.) The cable includes both power and unjacketed SAE J1939-15 paired signal circuits along with dual ground wires to accommodate grounding requirements within the constraints of the SAE J2691 terminal capacity.
Standard

Combination 11 Conductors and 2 Pairs ECBS Cable

2018-06-03
HISTORICAL
J2742_201806
This SAE standard establishes the minimum construction and performance requirements for a combination cable consisting of 11 conductors and 2 twisted pairs for use on trucks, trailers, and dollies in conjunction with SAE J2691. (15 pole connectors.) The cable includes both power and unjacketed SAE J1939-15 paired signal circuits along with dual ground wires to accommodate grounding requirements within the constraints of the SAE J2691 terminal capacity.
Standard

Combination 11 Conductors and 4 Pairs ECBS Cable

2013-04-09
HISTORICAL
J2742_201304
This SAE standard establishes the minimum construction and performance requirements for a combination cable consisting of 11 conductors and 4 twisted pairs for use on trucks, trailers, and dollies in conjunction with SAEJ2691. (15 pole connectors.) The cable includes both power and unjacketed SAE J1939-15 paired signal circuits along with dual ground wires to accommodate grounding requirements within the constraints of the SAE J2691 terminal capacity.
Standard

Full Adaptive Forward Lighting Systems

2013-03-05
HISTORICAL
J2838_201303
This SAE standard provides test procedures, performance requirements, design guidelines and installation guidelines for full adaptive forward lighting systems (AFS).
Standard

Bluetooth™ Wireless Protocol for Automotive Applications

2001-12-31
HISTORICAL
J2561_200112
This SAE Information Report defines the functionality of typical Bluetooth applications used for remotely accessing in-vehicle automotive installations of electronic devices. Remote access may be achieved directly with on-board Bluetooth modules, or indirectly via a custom designed gateway that communicates with Bluetooth and non-Bluetooth modules alike. Access to the vehicle, in the form of two-way communications, may be made via a single master port, or via multiple ports on the vehicle. The Bluetooth technology may also be used in conjunction with other types of off-board wireless technology. This report recommends using a message strategy that is already defined in one or more of the documents listed in 2.1.1, 2.1.4, 2.1.5, and 2.1.6. Those strategies may be used for some of the typical remote communications with a vehicle. It is recognized, however, that there may be specific applications requiring a unique message strategy or structure.
Standard

Bluetooth™ Wireless Protocol for Automotive Applications

2016-11-08
CURRENT
J2561_201611
This SAE Information Report defines the functionality of typical Bluetooth applications used for remotely accessing in-vehicle automotive installations of electronic devices. Remote access may be achieved directly with on-board Bluetooth modules, or indirectly via a custom designed gateway that communicates with Bluetooth and non-Bluetooth modules alike. Access to the vehicle, in the form of two-way communications, may be made via a single master port, or via multiple ports on the vehicle. The Bluetooth technology may also be used in conjunction with other types of off-board wireless technology. This report recommends using a message strategy that is already defined in one or more of the documents listed in 2.1.1, 2.1.4, 2.1.5, and 2.1.6. Those strategies may be used for some of the typical remote communications with a vehicle. It is recognized, however, that there may be specific applications requiring a unique message strategy or structure.
Standard

ELECTROMAGNETIC SUSCEPTIBILITY MEASUREMENT PROCEDURES FOR VEHICLE COMPONENTS (EXCEPT AIRCRAFT)

1987-08-01
CURRENT
J1113_198708
This SAE Recommended Practice establishes uniform laboratory measurement techniques for the determination of the susceptibility to undesired electromagnetic sources of electrical, electronic, and electromechanical ground-vehicle components. It is intended as a guide toward standard practice, but may be subject to frequent change to keep pace with experience and technical advances, and this should be kept in mind when considering its use.
Standard

ELECTROMAGNETIC SUSCEPTIBILITY PROCEDURES FOR VEHICLE COMPONENTS (EXCEPT AIRCRAFT)

1984-06-01
HISTORICAL
J1113_198406
This SAE Recommended Practice establishes uniform laboratory measurement techniques for the determination of the susceptibility to undesired electromagnetic sources of electrical, electronic, and electromechanical ground-vehicle components. It is intended as a guide toward standard practice, but may be subject to frequent change to keep pace with experience and technical advances, and this should be kept in mind when considering its use.
Standard

ELECTROMAGNETIC SUSCEPTIBILITY PROCEDURES FOR VEHICLE COMPONENTS (EXCEPT AIRCRAFT)

1978-06-01
HISTORICAL
J1113A_197806
This SAE Recommended Practice establishes uniform laboratory measurement techniques for the determination of the susceptibility to undesired electromagnetic sources of electrical, electronic, and electromechanical ground-vehicle components. It is intended as a guide toward standard practice but may be subject to frequent change to keep pace with experience and technical advances, and this should be kept in mind when considering its use.
Standard

Model Description Documentation Recommended Practice for Ground Vehicle System and Subsystem Simulation

2020-02-17
CURRENT
J2998_202002
SAE J2998 defines the recommended information content to be included for documenting dynamical models used for simulation of ground vehicle systems. It describes the information that should be compiled to describe a model for the following user applications or use cases: (1) exchange, promotion, and selection; (2) creation requests; (3) development process management; (4) compatibility evaluation; (5) testing-in-the-loop simulations with hardware and/or software; (6) simulation applications; and (7) development and maintenance. For each use case, a model description documentation (MDD) template is provided in the appendices to facilitate model documentation. In addition, an example of a completed model documentation template is provided in the appendices.
Standard

15 Pole Connector Between Towing Vehicles and Trailers with 12 Volt Nominal Supply

2018-04-15
HISTORICAL
J2691_201804
This SAE standard establishes the minimum construction and performance requirements for a 15 Pole Connector Between Towing Vehicles and Trailers, for trucks, trailers, and dollies in conjunction with SAE J2742. The connector accommodates both power and ISO 11992-1 signal circuits along with dual ground wires to accommodate grounding requirements within the constraints of the SAE J2691 terminal capacity.
Standard

Ground Vehicle Network Protocol Selection

2022-12-02
WIP
J2524
SAE has many vehicle network "J" documents to analyze and select from. Many vehicle network architectures have an overlap of characteristics that can apply to several networks.
X