Refine Your Search

Topic

Author

Affiliation

Search Results

Training / Education

Guidance for Software Tool Qualification (DO-330)

This course is offered in China only and presented in Mandarin Chinese. The course materials are bilingual (English and Chinese). Software technology for airborne and ground-based operations has changed and software development teams frequently need guidance on tools for the development, verification, transformation, testing, modification and control of software programs. Developed in support of DO-178C or CO-278A, RTCA DO-330 explains the process and objectives for qualifying software tools and facilitates the compliance of airborne products.
Training / Education

Analysis and Design of Hybrid Transmission System

This course is offered in China only and presented in Mandarin Chinese. There appears to be a significant gap between Chinese and international hybrid technologies in terms of vehicle fuel consumption, system integration, and cost control. This course has been designed to increase an engineers’ knowledge of hybrid transmission development, hybrid system design, and hybrid vehicle powertrain integration. The course focuses on energy efficiency in electric vehicles (EV) and hybrid electric vehicles (HEV) fuel economy while maintaining and improving engineering for optimal power and performance, cost control, and occupant comfort.
Training / Education

EIC System-integrated Thermal Management Technologies

This course is offered in China only and presented in Mandarin Chinese. The course materials are bilingual (English and Chinese). Energy conservation and emission reduction has always been a goal for many countries. Especially since the introduction of China VI Vehicle Emission Standards and CAFC & NEV Credit Regulation, the output of NEVs has grown explosively while accompanied by a large number of car fire burning problems and complaints about the shortening of proclaimed electric-only driving range.
Training / Education

Control Systems Simplified

This course introduces the highly mathematical field of control systems focusing on what the classical control system tools do and how they can be applied to automotive systems. Dynamic systems, time/frequency responses, and stability margins are presented in an easy to understand format. Utilizing Matlab and Simulink, participants will learn how simple computer models are generated. Other fundamental techniques in control design such as PID and lead-lag compensators will be presented as well as the basics of embedded control systems.
Training / Education

Fundamentals of Powertrain Design for Hybrid Electric Vehicles

This course is offered in China only and presented in Mandarin Chinese. The course materials are bilingual (English and Chinese). Driven by high fuel prices, environmental regulations, and consumer demand, the market for hybrid electric vehicles (HEV) has experienced rapid growth. Every major automotive company produces an HEV. There are approximately fifty different HEV models on the market and over eight million HEVs already sold. In order to meet current and future demands in the HEV and PHEV markets, success will depend on engineering personnel knowing how to develop and manufacture HEV powertrains.
Training / Education

Powertrain Architecture, Controls, and Energy Management Systems of EV and HEV

This course is offered in China only and presented in Mandarin Chinese. The course materials are bilingual (English and Chinese). Developing environmentally cleaner and more fuel efficient vehicles is transforming the automotive industry worldwide, particularly in China with its emphasis on new energy vehicles. There are many engineering challenges that must be addressed in designing effective new energy vehicles. The technical knowledge required to understand and make the right decisions with regard to powertrain architecture, powertrain controls, and energy management strategies is critical to success in this market.
Training / Education

LIDAR and Infrared Cameras for ADAS and Autonomous Sensing

This course examines ADAS and autonomous vehicle technologies that offer the potential to increase safety while attempting to optimize the cost of car ownership. LIDAR (light detection ranging) and Infrared camera sensing are seeing a rapid growth and adoption in the industry. However, the sensor requirements and system architecture options continue to evolve almost every six months. This course will provide the foundation to build on for these two technologies in automotive applications. It will include a demonstration model for LIDAR and Infrared camera.
Training / Education

Fundamentals and Applications of Electric Motors for Automotive Industries

As the electrification of automobiles is on the rise, it is imperative that the capabilities and limits of the associated devices and systems be understood at a higher level than previously considered adequate. For example, the Tesla Model S has 62 electric motors while the Model X has 70! They propel the vehicle and provide comfort too. Their design must reflect the worst case operating scenarios, duty cycles, environment, country of use and its standards, etc.
Training / Education

Model-based Development of Embedded Software in Compliance with ISO 26262 – Challenges and Effective Solutions

This training class describes how to develop and safeguard safety critical embedded software in serial projects with Simulink in compliance with ISO 26262 (part 6). Beginning with a general overview of the ISO standard, we proceed by focusing on the ISO 26262 requirements that are specifically relevant to model based development. We address the impact the standard has had on model-based development with Simulink, as well as the requirements for model and software architecture in safety critical software. We also look at modeling guidelines and testing before wrapping up the class by assessing ISO 26262 readiness of controller functions.
Training / Education

Intelligent Vehicles From Functional Framework to Vehicle Architecture

This course provides an overview of state-of-the-art intelligent vehicles, presents a systematic framework for intelligent technologies and vehicle-level architecture, and introduces testing methodologies to evaluate individual and integrated intelligent functions. Considering the increasing demand for vehicle intelligence, it is critical to gain an understanding of the growing variety of intelligent vehicle technologies and how they must function together effectively as a system.
Training / Education

EV Motor Design Analysis and Test Verification

This course, designed for EV motor engineers and graduate participants, systematically introduces EV motor design analysis and test verification. Combined with engineering practice, it discusses typical EV motor design cases and practical issues related to EV motor technology, aiming to broaden the horizon of EV motor design engineers and improve their problem-solving skills.
Training / Education

Fundamentals of Automotive All-Wheel Drive Systems

This course provides an introduction to the fundamental concepts and evolution of passenger car and light truck 4x4/all-wheel drive (AWD) systems including the nomenclature utilized to describe these systems. Basic power transfer unit and transfer case design parameters, component application to system function, the future of AWD systems, and emerging technologies that may enable future systems are covered. This course is an excellent follow-up to the  98024-A Familiarization of Drivetrain Components course (which is designed for those who have limited experience with the total drivetrain).
Training / Education

Smart Mobility in Smart Cities

This course enables transportation professionals to optimize smart mobility for maximum return within smart cities. It offers a structured introduction to the subjects and makes use of real-life examples, local government, technology solution providers, and consulting. The course integrates insights and understandings related to the best use of technology, best practices, lessons learned, challenges, and opportunities. 
Training / Education

Combustion and Emissions for Engineers

Public awareness regarding pollutants and their adverse health effects has created an urgent need for engineers to better understand the combustion process as well as the pollutants formed as by-products of that process. To effectively contribute to emission control strategies and design and develop emission control systems and components, a good understanding of the physical and mathematical principles of the combustion process is necessary. This course will bring issues related to combustion and emissions "down to earth," relying less on mathematical terms and more on physical explanations and analogies.
Training / Education

A Familiarization of Drivetrain Components

In this course, participants will be exposed to various methods that can be used to accomplish an efficient, robust & quiet running drivetrain. This course focuses on the terms, functions, nomenclature, operating characteristics and effect on vehicle performance for each of the drivetrain components. Participants will receive an introduction to the various components of the drivetrain, including the clutch or torque converter, manual or automatic transmission, driveshaft, axle, wheel ends, and brakes.
Training / Education

The Principles and Applications of Powertrain Controls for the New Energy Vehicles

课程概述 Powertrain controls for NEVs are one of the most complex and highly confidential areas of NEV research and development.  This two-day course takes the seemingly complicated field of NEV powertrain controls and summarizes it into a few basic principles.  The latest and most popular NEV powertrains are also reviewed to illustrate these principles and the controls strategies used.  对于新能源汽车来说,动力总成控制一直以来都是最复杂的和高度机密的领域之一。在这两天的课程中,我们将把看似复杂的动力总成控制系统总结出几条基本规则,同时,通过对当今其他车型动力控制系统的案例分析,来把这些规则和原理进行融会贯通。
Training / Education

EMC Design for PCB Design for New Energy Vehicles

This course is offered in China only and presented in Mandarin Chinese. Developing environmentally cleaner and more fuel efficient vehicles is transforming the automotive industry worldwide. There are many engineering challenges that must be addressed in designing effective new energy vehicles. The technical knowledge required to understand and make the right decisions with regard to powertrain architecture, powertrain controls, and energy management strategies is critical to success in this market.
Training / Education

Application Development of Electric Vehicles and Hybrid Electric Vehicles Balancing Economic Objectives and Technical Requirements

This course is offered in China only and presented in Mandarin Chinese. The course materials are bilingual (English and Chinese).   More and more stringent emission and fuel consumption regulations are pushing the automotive industry toward electrified powertrain and electrified vehicles. This is particularly evident in China, where there is an increased demand for  (EV) and (HEV). Infrastructure is being built across the country for convenient charging. It must now be determined how to meet the technical targets for EV/HEV regulations under economic constraints and how to best develop the major ePowertrain components (battery and motor).
Training / Education

Autonomous Vehicle System and Control Architecture

This 4-week virtual-only experience is conducted by leading experts in the autonomous vehicle industry and academia. You’ll develop an understanding of the fundamentals of AV architecture, including mechatronics, kinematics, and the sense-think-act framework in autonomous systems. The course builds a connection for how robotics are used in autonomous vehicles and provides you with demonstrations, procedures, and the skills necessary to program a robot with basic commands using the Robot Operating System (ROS).
Training / Education

Powertrain Product Development for Electrified Vehicles

This course is offered in China only and presented in Mandarin Chinese. The course materials are bilingual (English and Chinese). Transmission and driveline products for new energy vehicles are different in many aspects from their counterparts in traditional vehicles. Participants will have a chance to develop in-depth, practical, and hands-on knowledge regarding system configuration, key subsystems and components design, system control, testing, design verification, and so forth. Common problems such as reliability, durability, NVH as well as related technology trends will be addressed from an engineer's viewpoint.
X