Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

Implementation and Optimization of a Variable-Speed Coolant Pump in a Powertrain Cooling System

2020-02-07
Abstract This study investigates methods to precisely control a coolant pump in an internal combustion engine. The goal of this research is to minimize power consumption while still meeting optimal performance, reliability and durability requirements for an engine at all engine-operating conditions. This investigation achieves reduced fuel consumption, reduced emissions, and improved powertrain performance. Secondary impacts include cleaner air for the earth, reduced operating costs for the owner, and compliance with US regulatory requirements. The study utilizes mathematical modeling of the cooling system using heat transfer, pump laws, and boiling analysis to set limits to the cooling system and predict performance changes.
Journal Article

Experimental Investigation of Heat Transfer Rate and Pressure Drop through Angled Compact Heat Exchangers Relative to the Incoming Airflow

2014-09-30
2014-01-2337
This paper presents pressure drops and heat transfer rates for compact heat exchangers, where the heat exchangers are angled 90°, 60°, 30° and 10° relative to the incoming airflow. The investigation is based on three heat exchangers with thicknesses of 19mm and 52mm. Each heat exchanger was mounted in a duct, where it was tested for thermal and isothermal conditions. The inlet temperature of the coolant was defined to two temperatures; ambient temperature and 90°C. For the ambient cases the coolant had the same temperature as the surrounding air, these tests were performed for five airflow rates. When the coolant had a temperature of 90°C a combination of five coolant flow rates and five airflow rates were tested. The test set-up was defined as having a constant cross-section area for 90°, 60° and 30° angles, resulting in a larger core area and a lower airspeed through the core, for a more inclined heat exchanger.
Journal Article

Efficient, Active Radiator-Cooling System

2013-05-15
2013-01-9017
A new concept for an efficient radiator-cooling system is presented for reducing the size or increasing the cooling capacity of vehicle coolant radiators. Under certain conditions, the system employs active evaporative cooling in addition to conventional finned air cooling. In this regard, it is a hybrid radiator-cooling system comprised of the combination of conventional air-side finned surface cooling and active evaporative water cooling. The air-side finned surface is sized to transfer required heat under all driving conditions except for the most severe. In the later case, evaporative cooling is used in addition to the conventional air-side finned surface cooling. Together the two systems transfer the required heat under all driving conditions. However, under most driving conditions, only the air-side finned surface cooling is required. Consequently, the finned surface may be smaller than in conventional radiators that utilize air-side finned surface cooling exclusively.
Technical Paper

Modeling Study of the Battery Pack for the Electric Conversion of a Commercial Vehicle

2021-09-05
2021-24-0112
Many aspects of battery electric vehicles are very challenging from the engineering point of view in terms of safety, weight, range, and drivability. Commercial vehicle engines are often subjected to high loads even at low speeds and this can lead to an intense increment of the battery pack temperature and stress of the cooling system. For these reasons the optimal design of the battery pack and the relative cooling system is essential. The present study deals with the challenge of designing a battery pack that satisfies both the conditions of lowest weight and efficient temperature control. The trade-off between the battery pack size and the electrical stress on the cells is considered. The electric system has the aim to substitute a 3.0 liters compression ignition engine mainly for commercial vehicles.
Technical Paper

High Voltage Battery (HVB) Durability Enhancement in Electric Mobility through 1D CAE

2020-08-18
2020-28-0013
The public transport in India is gradually shifting towards electric mobility. Long range in electric mobility can be served with High Voltage Battery (HVB), but HVB can sustain for its designed life if it’s maintained within a specific operating temperature range. Appropriate battery thermal management through Battery Cooling System (BCS) is critical for vehicle range and battery durability This work focus on two aspects, BCS sizing and its coolant flow optimization in Electric bus. BCS modelling was done in 1D CAE software. The objective is to develop a model of BCS in virtual environment to replicate the physical testing. Electric bus contain numerous battery packs and a complex piping in its cooling system. BCS sizing simulation was performed to keep the battery packs in operating temperature range.
Journal Article

Boiling Coolant Vapor Fraction Analysis for Cooling the Hydraulic Retarder

2015-04-14
2015-01-1611
The hydraulic retarder is the most stabilized auxiliary braking system [1-2] of heavy-duty vehicles. When the hydraulic retarder is working during auxiliary braking, all of the braking energy is transferred into the thermal energy of the transmission medium of the working wheel. Theoretically, the residual heat-sinking capability of the engine could be used to cool down the transmission medium of the hydraulic retarder, in order to ensure the proper functioning of the hydraulic retarder. Never the less, the hydraulic retarder is always placed at the tailing head of the gearbox, far from the engine, long cooling circuits, which increases the risky leakage risk of the transmission medium. What's more, the development trend of heavy load and high speed vehicle directs the significant increase in the thermal load of the hydraulic retarder, which even higher than the engine power.
Journal Article

An Engine Thermal Management System Design for Military Ground Vehicle - Simultaneous Fan, Pump and Valve Control

2016-04-05
2016-01-0310
The pursuit of greater fuel economy in internal combustion engines requires the optimization of all subsystems including thermal management. The reduction of cooling power required by the electromechanical coolant pump, radiator fan(s), and thermal valve demands real time control strategies. To maintain the engine temperature within prescribed limits for different operating conditions, the continual estimation of the heat removal needs and the synergistic operation of the cooling system components must be accomplished. The reductions in thermal management power consumption can be achieved by avoiding unnecessary overcooling efforts which are often accommodated by extreme thermostat valve positions. In this paper, an optimal nonlinear controller for a military M-ATV engine cooling system will be presented. The prescribed engine coolant temperature will be tracked while minimizing the pump, fan(s), and valve power usage.
Technical Paper

A Lumped-Parameter Thermal Model for System Level Simulations of Hybrid Vehicles

2020-04-14
2020-01-0150
A lumped-parameter thermal network model, based on the analogy between heat transfer and electric current flow, is presented for hybrid powertrain cooling systems. In order to optimally select the powertrain components that are commercially viable and meet performance, emission, fuel economy and life targets, it is necessary to consider the influence of cooling architecture. Especially in electric and hybrid vehicles, temperature monitoring is important to increase power and torque utilization while preventing thermal damages. Detailed thermal models such as FEA and CFD are considered for component level assessments as they can locate thermal hotspots and identify possible design changes needed. However, for the system level analysis, the detailed numerical models are not suitable due to the requirement of high computation effort.
Journal Article

An Analysis of a Lithium-ion Battery System with Indirect Air Cooling and Warm-Up

2011-09-13
2011-01-2249
Ideal operation temperatures for Li-ion batteries fall in a narrow range from 20°C to 40°C. If the cell operation temperatures are too high, active materials in the cells may become thermally unstable. If the temperatures are too low, the resistance to lithium-ion transport in the cells may become very high, limiting the electrochemical reactions. Good battery thermal management is crucial to both the battery performance and life. Characteristics of various battery thermal management systems are reviewed. Analyses show that the advantages of direct and indirect air cooling systems are their simplicity and capability of cooling the cells in a battery pack at ambient temperatures up to 40°C. However, the disadvantages are their poor control of the cell-to-cell differential temperatures in the pack and their capability to dissipate high cell generations.
Technical Paper

Heat Augmentation Prevention Shield on Tractor Horizontal Exhaust Pipe for Field Fire Safety Compliance

2020-09-25
2020-28-0370
Off highways vehicles especially tractors are prone to operate on fields where tractors are exposed to dry crops, chaffs (the husks of corn or other seed separated by winnowing or threshing) and particles which can catch fire easily when it is exposed to surface/skin temperature of more than 200 degree Celsius. It will be a basic projection that tractor will be having vertical exhaust tube at a height but there are certain tractors and applications where exhaust pipe must be below certain height, and which will be close to the ground. In these scenarios the skin temperature of exposed exhaust tail pipe part must be within a limit and that must be within the existing design. Break firing point of chaffs and husk also experimented at different moisture level. Several options are being verified on different heat flow and geometry changes, additional air entry jet nozzle with double pipe arrangement.
Technical Paper

Trends in Hydraulic Hose and Assemblies

1991-09-01
911884
Hoses and assembies used in hydraulic applications are constantly being required to do more and more. The hydrostatic drives are becoming more sensitive to dirt and contamination. In addition, new hydraulic fluids are now being introduced that are more environmentally, safe. As a result, care must be taken in choosing the materials used and the processes of manufacturing in order to ensure that the assemblies provide long life and will not contribute to system failures.
Standard

Low-Temperature Coolant Circuit Nomenclature and Applications

2018-11-08
CURRENT
J3136_201811
The document provides clarity related to multiple temperature coolant circuits used in on- and off-highway, gasoline, and light- to heavy-duty diesel engine cooling systems. Out of scope are the terms and definitions of thermal flow control valves used in either low- or high-temperature coolant circuits. This subject is covered in SAE J3142.
Journal Article

Design of Direct and Indirect Liquid Cooling Systems for High- Capacity, High-Power Lithium-Ion Battery Packs

2012-09-24
2012-01-2017
Battery packs for plug-in hybrid electrical vehicle (PHEV) applications can be characterized as high-capacity and high-power packs. For PHEV battery packs, their power and electrical-energy capacities are determined by the range of the electrical-energy-driven operation and the required vehicle drive power. PHEV packs often employ high-power lithium-ion (Li-ion) pouch cells with large cell capacity in order to achieve high packing efficiency. Lithium-ion battery packs for PHEV applications generally have a 96SnP configuration, where S is for cells in series, P is for cells in parallel, and n = 1, 2 or 3. Two PHEV battery packs with 355V nominal voltage and 25-kWh nominal energy capacity are studied. The first pack is assembled with 96 70Ah high-power Li-ion pouch cells in 96S1P configuration. The second pack is assembled with 192 35Ah high-power Li-ion pouch cells in 96S2P configuration.
Journal Article

Testing and Prediction of Material Compatibility of Biofuel Candidates with Elastomeric Materials

2015-11-01
2015-01-9075
In this paper compatibility studies of biofuel candidates and similar liquids with the elastomeric materials nitrile butadiene rubber and fluoroelastomer are presented. The results gained with defined reference elastomers are compared to results gained with the materials used in the technical application. For this purpose test specimens are prepared from fuel hoses and the material used for shaft seals of fuel pumps. The experimental results are subsequently used to evaluate prediction approaches based on the HSP- and QSPR-method. Finally a comparison of these two approaches is given.
Journal Article

Evaluating the Cooling Performance of a Compressed Natural Gas Medium Commercial Vehicle with Water-Cooled Engine Systems—An Approach beyond Regulatory Standards

2021-11-03
Abstract The purpose of the article is to evaluate the cooling performance efficiency of a Compressed Natural Gas (CNG) medium commercial vehicle with a viscous fan, fresh air cleaner, and choked air cleaner in comparison with limits prescribed in the Indian Standard (IS) 14557. Due to the increase in CNG availability, a shift is observed in the market demand for CNG vehicles. The earlier CNG vehicle duty cycle was limited to plain roads and some limited cities, but now vehicles are being used for a short trip to nearby hilly routes thereby shifting the application of the use of a CNG vehicle. CNG vehicles can now be operated in hilly areas where power and torque demand is maximum and operates at lower vehicle speeds and in lower gears. The subjected vehicles are designed for haulage applications to operate with conventional fixed fans, which are permanently engaged, and smaller radiators.
Standard

Oil Change System for Quick Service of Off-Road Self-Propelled Work Machines

2007-03-20
HISTORICAL
J1069_200703
This recommended practice deals with sizes, design considerations, and practices related to evacuating and refilling by positive means any oil comportment. This practice may also be applicable to other fluid compartments and is to supplement rather than eliminate the drain plug. (Ref. ISO TC 131/4/N27)
Standard

Oil Change System for Quick Service of Off-Road Self-Propelled Work Machines

2012-05-02
CURRENT
J1069_201205
This recommended practice deals with sizes, design considerations, and practices related to evacuating and refilling by positive means any oil comportment. This practice may also be applicable to other fluid compartments and is to supplement rather than eliminate the drain plug. (Ref. ISO TC 131/4/N27)
X