Refine Your Search

Topic

Search Results

Journal Article

Fuel Film Behavior Analysis Using Simulated Intake Port

2009-11-03
2009-32-0129
Transient behavior of the engine is one of the most crucial factors for motorcycle features. Characterization of the fuel film with port fuel injection (PFI) is necessary to enhance this feature with keeping others, such as high output, low emissions and good fuel consumption. In order to resolve the complicated phenomena in real engine condition into simple physical issues, a simulated intake port was used in our research with Laser Induced Fluorescence (LIF) technique to allow accurate measurement of the fuel film thickness, complemented by visualization of the film development and spray behavior using high-speed video imaging. Useful results have been conducted from the parametric studies with various sets of conditions, such as injection quantity, air velocity and port backpressure.
Journal Article

Effect of Fuel and Thermal Stratifications on the Operational Range of an HCCI Gasoline Engine Using the Blow-Down Super Charge System

2010-04-12
2010-01-0845
In order to extend the HCCI high load operational limit, the effects of the distributions of temperature and fuel concentration on pressure rise rate (dP/dθ) were investigated through theoretical and experimental methods. The Blow-Down Super Charge (BDSC) and the EGR guide parts are employed simultaneously to enhance thermal stratification inside the cylinder. And also, to control the distribution of fuel concentration, direct fuel injection system was used. As a first step, the effect of spatial temperature distribution on maximum pressure rise rate (dP/dθmax) was investigated. The influence of the EGR guide parts on the temperature distribution was investigated using 3-D numerical simulation. Simulation results showed that the temperature difference between high temperature zone and low temperature zone increased by using EGR guide parts together with the BDSC system.
Journal Article

Analysis of Port Injected Fuel Spray Under Cross Wind Using 2-D Measurement Techniques

2010-09-28
2010-32-0064
In a motorcycle gasoline engine, the port fuel injection system is rapidly spread. Compared to an automotive engine, the injected fuel does not impinge on the intake valve due to space restriction to install the injector. In addition, as the air flow inside the intake pipe may become very fast and has large cycle-to-cycle variation, it is not well found how the injector should be installed in the intake pipe to prepare “good” fuel-air mixture inside the intake pipe. In this study, the formation process of the fuel-air mixture is measured by using ILIDS system that is a 2-D droplets' size and velocity measurement system with high spatial resolution. Experiments with changing conditions such as flow speed and injection direction are carried out. As a result, the effects of injection direction, ambient flow speed and wall roughness on the fuel-air mixture formation process was examined, considering the three conditions of cold start, light to medium load operation and high load operation.
Technical Paper

Combustion Enhancement in a Gas Engine Using Low Temperature Plasma

2020-04-14
2020-01-0823
Low temperature plasma ignition has been proposed as a new ignition technique as it has features of good wear resistance, low energy release and combustion enhancement. In the authors’ previous study, lean burn limit could be extended slightly by low temperature plasma ignition while the power supply’s performance with steep voltage rising with time (dV/dt), showed higher peak value of the rate of heat release and better indicated thermal efficiency. In this study, basic study of low temperature plasma ignition system was carried out to find out the reason of combustion enhancement. Moreover, the durability test of low temperature plasma plug was performed to check the wear resistance.
Journal Article

Extension of Operating Range of a Multi-Cylinder Gasoline HCCI Engine using the Blowdown Supercharging System

2011-04-12
2011-01-0896
The objective of this study is to develop a practical technique to achieve HCCI operation with wide operation range. To attain this objective, the authors previously proposed the blowdown supercharge (BDSC) system and demonstrated the potential of the BDSC system to extend the high load HCCI operational limit. In this study, experimental works were conducted with focusing on improvement of combustion stability at low load operation and the reduction in cylinder to cylinder variation in ignition timing of multi-cylinder HCCI operation using the BDSC system. The experiments were conducted using a slightly modified production four-cylinder gasoline engine with compression ratio of about 12 at constant engine speed of 1500 rpm. The test fuel used was commercial gasoline which has RON of 91. To improve combustion stability at low load operation, the valve actuation strategy for the BDSC system was newly proposed and experimentally examined.
Technical Paper

Stratification of Swirl Intensity in the Axial Direction for Control of Turbulence Generation During the Compression Stroke

1991-02-01
910261
Control of turbulence during the compression stroke is suggested by both theoretical calculations and experimental results obtained with an LDV measurement in a motored engine. The authors have found experimentally that when an axial distribution of swirl intensity exists, a large-scale annular vortex is formed inside the cylinder during the compression stroke and this vortex generates and transports turbulence energy. A numerical calculation is adopted to elucidate this phenomenon. Then, an axial stratification of swirl intensity is found to generate a large-scale annular vortex during the compression stroke by an interaction between the piston motion and the axial pressure gradient. The initial swirl profile is parametrically varied to assess its effect on the turbulence parameters. Among calculated results, turbulence energy is enhanced strongest when the swirl intensity is highest at the piston top surface and lowest at the bottom surface of the cylinder head.
Technical Paper

Investigation of Breakup Modeling of a Diesel Spray by Making Comparisons with 2D Measurement Data

2007-07-23
2007-01-1898
In this study, the characteristics of diesel spray droplets, such as the velocity and the diameter were simultaneously measured by using an improved ILIDS (Interferometric Laser Imaging for Droplet Sizing) method on a 2D plane to evaluate the droplet breakup modeling. In numerical analysis, DDM (Discrete Droplet Model) was employed with sub-models such as droplet breakup, droplet drag force and turbulence. Experiments have been performed with an accumulator type unit-injector system and a constant-volume high-pressure vessel under the condition of quiescent ambient gas. The injection pressure and ambient gas pressure were set up to 100 MPa and 0.1 / 1 MPa, respectively. The nozzle orifice diameter was 0.244 mm with a single hole. The measurement region was chosen at 40 ∼ 60 mm from the nozzle-tip. Numerical analysis of diesel sprays was conducted and the results were compared to the measured results.
Technical Paper

A Computational Investigation into the Cool Flame Region in HCCI Combustion

2004-03-08
2004-01-0552
Multi-dimensional computational efforts using comprehensive and skeletal kinetics have been made to investigate the cool flame region in HCCI combustion. The work was done in parallel to an experimental study that showed the impact of the negative temperature coefficient and the cool flame on the start of combustion using different fuels, which is now the focus of the simulation work. Experiments in a single cylinder CFR research engine with n-butane and a primary reference fuel with an octane number of 70 (PRF 70) were modeled. A comparison of the pressure and heat release traces of the experimental and computational results shows the difficulties in predicting the heat release in the cool flame region. The behavior of the driving radicals for two-stage ignition is studied and is compared to the behavior for a single-ignition from the literature. Model results show that PRF 70 exhibits more pronounced cool flame heat release than n-butane.
Technical Paper

Quantitative 2-D Gas Concentration Measurement by Laser-Beam Scanning Technique with Combination of Absorption and Fluorescense

2003-10-27
2003-01-3153
In order to measure the spatial distribution of fuel jet concentration quantitatively, a technique combining methods of fluorescence with absorption was developed. LIF method can obtain the spatial fuel distribution qualitatively, but quantitative measurement is difficult. Meanwhile, laser-beam absorption method can quantitatively obtain the integrated jet concentration on the light-path. In addition, scanning the laser-beam allows for a quasi 2-D quantitative measurement of the jet concentration. Firstly, in this study, this measurement system was tested in a homogeneously charged field while varying the dopant NO2 concentration, the laser-beam scanning speed, and the ambient pressure. As a result, some data-correction techniques were developed to produce a quantitative measurement. Secondly, this system was applied to gaseous jet fields in a constant volume bomb.
Technical Paper

Comparison of HCCI Operating Ranges for Combinations of Intake Temperature, Engine Speed and Fuel Composition

2002-06-03
2002-01-1924
A series of engine experiments have been performed to explore the impact intake temperature, engine speed and fuel composition on the HCCI operating range of a CFR engine. The experimental matrix covers a range of engine speeds 600 - 2000 RPM), intake temperatures (300 K - 400 K), and four different fuels. Three of the fuels had different chemical composition but had equivalent research octane numbers of 91.8. The fourth fuel, a blend of primary reference fuels had a research octane number of 70. The acceptable HCCI operating range of the engine was defined through two criteria; the rate of pressure rise needed to be less than 10 MPa per crank angle and the covariance of the indicated mean effective pressure needed to be less than 10 percent. Using these limits the HCCI operating range for the engine was evaluated for the experimental matrix. Data for emissions, and fuel consumption as well as in-cylinder pressure were recorded.
Technical Paper

Research and Development of a Direct Injection Stratified Charge Rotary Engine with a Pilot Flame Ignition System

2001-12-01
2001-01-1844
A Direct Injection Stratified Charge Rotary Engine ( DISC-RE ) with a pilot flame ignition system has been studied to find the possibility of simultaneous reductions of fuel consumption rate and HC exhaust gas emissions. Firstly, combustion characteristics in a model combustion chamber, which simulates the DISC-RE were examined from the viewpoints of calculation and experiment. The high speed photography and the indicated pressure analysis were experimentally performed while numerical calculations of the mixture formation and combustion processes were also carried out. As a result, it has been found that the combustion using the pilot flame ignition system is much activated and a better ignitability is attained under lean mixtures than using a spark ignition system. Secondly, a single rotor with 650 cc displacement DISC-RE was built as a prototype. Combustion characteristics and its performance were tested using a combustion analyzer.
Technical Paper

An Investigation Into the Effect of Fuel Composition on HCCI Combustion Characteristics

2002-10-21
2002-01-2830
A single cylinder CFR research engine has been run in HCCI combustion mode for a range of temperatures and fuel compositions. The data indicate that the best HCCI operation, as measured by a combination of successful combustion with low ISFC, occurs at or near the rich limit of operation. Analysis of the pressure and heat release histories indicated the presence, or absence, and impact of the fuel's NTC ignition behavior on establishing successful HCCI operation. The auto-ignition trends observed were in complete agreement with previous results found in the literature. Furthermore, analysis of the importance of the fuel's octane sensitivity, through assessment of an octane index, successfully explained the changes in the fuels auto-ignition tendency with changes in engine operating conditions.
Technical Paper

Experimentally Evaluated Spray Model for a Swirl-Type Injector

2002-10-21
2002-01-2696
To clarify the fuel spray formation process for a swirl-type injector, numerical analyses using both VOF (Volume Of Fluid) model and DDM (Discrete Droplet Model) method are carried out. VOF model is used to simulate the two-phase flow inside the injector and also the liquid film formation process outside the nozzle, while DDM is used to simulate a free fuel spray in a constant-volume chamber using initial conditions deduced by empirical equations or calculated results of VOF model. As a result, fairly good agreement of spray characteristics, such as the spray shape and the tip penetration between the experiment and calculation can be obtained by adopting initial conditions calculated by VOF model. However, improvements of droplet breakup models and of two-phase flow calculation method would be required to achieve quantitatively good agreement.
Technical Paper

Driving Cycle Simulation of a Vehicle with Gasoline Homogeneous Charge Compression Ignition Engine Using a Low-RON Fuel

2016-10-17
2016-01-2297
An improvement of thermal efficiency of internal combustion engines is strongly required. Meanwhile, from the viewpoint of refinery, CO2 emissions and gasoline price decrease when lower octane gasoline can be used for vehicles. If lower octane gasoline is used for current vehicles, fuel consumption rate would increase due to abnormal combustion. However, if a Homogeneous Charge Compression Ignition (HCCI) engine were to be used, the effect of octane number on engine performance would be relatively small and it has been revealed that the thermal efficiency is almost unchanged. In this study, the engine performance estimation of HCCI combustion using lower octane gasoline as a vision of the future engine was achieved. To quantitatively investigate the fuel consumption performance of a gasoline HCCI engine using lower octane fuel, the estimation of fuel consumption under different driving test cycles with different transmissions is carried out using 1D engine simulation code.
Technical Paper

A Study of Control Strategy for Combution Mode Switching Between HCCI and SI With the Blowdown Supercharging System

2012-04-16
2012-01-1122
To find an ignition and combustion control strategy in a gasoline-fueled HCCI engine equipped with the BlowDown SuperCharging (BDSC) system which is previously proposed by the authors, a one-dimensional HCCI engine cycle simulator capable of predicting the ignition and heat release of HCCI combustion was developed. The ignition and the combustion models based on Livengood-Wu integral and Wiebe function were implemented in the simulator. The predictive accuracy of the developed simulator in the combustion timing, combustion duration and heat release rate was validated by comparing to experimental results. Using the developed simulator, the control strategy for the engine operating mode switching between HCCI and SI combustion was explored with focus attention on transient behaviors of air-fuel ratio, A/F, and gas-fuel ratio, G/F.
Technical Paper

Numerical Investigation of the Effect of Engine Speed and Delivery Ratio on the High-Speed Knock in a Small Two-Stroke SI Engine

2022-01-09
2022-32-0080
Knocking occurs within the high-speed range of small two-stroke engines used in handheld work equipment. High-speed knock may be affected by the engine speed and delivery ratio. However, evaluation of these factors independently using experimental methods is difficult. Therefore, in this study, these factors were independently evaluated using numerical calculations. The purpose of this study was to clarify the mechanism by which the intensity of high-speed knocking that occurs in small two-stroke engines becomes stronger. The results suggest that temperature inhomogeneity due to insufficient mixing of fresh air and previously burned gas may induce high-speed knocking in the operating range at high engine speeds.
Journal Article

A Study of Ignition Method for Gas Heat Pump Engine Using Low Temperature Plasma

2020-01-24
2019-32-0622
Low temperature plasma ignition has been proposed as a new ignition technique as it has features of good wear resistance, low energy release and combustion enhancement. In the authors’ previous study, lean burn limit could be extended by low temperature plasma ignition while a voltage drop during discharge, leading to the transition to arc discharge, was found. In this study, the structure of plug and power supply’s performance with steep voltage rising with time, dV/dt, are examined to investigate the effects on combustion performance. As a result, comparing three power sources of conventional, IES and steep dV/dt, steep dV/dt showed small cycle-to-cycle variation and shorter combustion period, leading to higher peak value of the rate of heat release and better indicated thermal efficiency by relatively 6% and 4% compared to CIC and IES, respectively.
Technical Paper

Effects of In-Cylinder Flow and Stratified Mixture on HCCI Combustion in High Load

2018-10-30
2018-32-0016
The purpose of this paper is to find a way to extend the high load limit of homogeneous charge compression ignition (HCCI) combustion. This paper presents the effect of in-cylinder flow and stratified mixture on HCCI combustion by experiments and three-dimensional computer fluid dynamics coupled with a detailed chemical reaction calculation. The first study was conducted using a rapid compression and expansion machine (RCEM) equipped with a flow generation plate to create in-cylinder turbulent flow and with a control unit of in-cylinder wall temperature to create in-cylinder temperature distribution. The study assesses the effect of the turbulent flow and the temperature distribution on HCCI combustion. In the second study, the numerical simulation of HCCI combustion was conducted using large eddy simulation coupled with a detailed chemical reaction calculation. The study analyzes the interaction between in-cylinder turbulent flow and mixture distribution and HCCI combustion.
Technical Paper

Numerical and Experimental Analyses of Mixture Formation Process Using a Fan-shaped DI Gasoline Spray: Examinations on Effects of Crosswind and Wall Impingement

2009-04-20
2009-01-1502
The analysis of spray characteristics is important to examine the combustion characteristics of DI (Direct Injection) gasoline engines because the fuel-air mixture formation is controlled by spray characteristics and in-cylinder gas motion. However, the mixture formation process has not been well clarified yet. In this study, the characteristics of a fan-shaped spray caused from a slit-type injector, such as the droplet size, its velocity and the droplet distribution were simultaneously measured on a 2D plane by using improved ILIDS (Interferometric Laser Imaging for Droplet Sizing) method. ILIDS method is an optical measurement technique using interference fringes by illuminating a transparent spherical particles with a coherent laser light. In the measurement of the wall-impinging spray, effects of the distance to the wall and the wall temperature on the spray characteristics were investigated.
Technical Paper

The Effect of In-Cylinder Flow and Mixture Distributions on Combustion Characteristics in a HCCI Engine

2017-11-05
2017-32-0061
It has been widely known that thermal and fuel stratifications of in-cylinder mixture are effective to reduce in-cylinder pressure rise rate during high load HCCI operations. In order to optimize a combustion chamber design and combustion control strategy for HCCI engines with wide operational range, it is important to know quantitatively the influence of the temperature and fuel concentration distributions on ignition and heat release characteristics. At the same time, it is important to know the influence of in-cylinder flow and turbulence on the temperature and fuel concentration distributions. In this study, a numerical simulation of HCCI combustion were conducted to investigate the effects of the in-cylinder flow and turbulence, and the distributions of temperature on ignition and combustion characteristics in HCCI combustion.
X