Refine Your Search

Topic

Author

Search Results

Journal Article

The Effects of Charge Homogeneity and Repeatability on Particulates Using the PLIF Technique in an Optical DISI Engine

2014-04-01
2014-01-1207
The work was concerned with visualisation of the charge homogeneity and cyclic variations within the planar fuel field near the spark plug in an optical spark ignition engine fitted with an outwardly opening central direct fuel injector. Specifically, the project examined the effects of fuel type and injection settings, with the overall view to understanding some of the key mechanisms previously identified as leading to particulate formation in such engines. The three fuels studied included a baseline iso-octane, which was directly compared to two gasoline fuels containing 10% and 85% volume of ethanol respectively. The engine was a bespoke single cylinder with Bowditch style optical access through a flat piston crown. Charge stratification was studied over a wide spectrum of injection timings using the Planar Laser Induced Fluorescence (PLIF) technique, with additional variation in charge temperature due to injection also estimated when viable using a two-line PLIF approach.
Journal Article

Effect of Valve Timing and Residual Gas Dilution on Flame Development Characteristics in a Spark Ignition Engine

2014-04-01
2014-01-1205
The goal of this research was to study and quantify the effect of exhaust valve timing and residual gas dilution on in-cylinder flow patterns, flame propagation and heat release characteristics in a spark ignition engine. Experiments were carried out in a recently developed single cylinder optical engine. Particle image velocimetry (PIV) was applied to measuring and evaluating the in-cylinder flow field. Detailed analysis of flame images combined with heat release data was presented for several engine operating conditions, giving insight into the combustion process in terms of visible flame area and flame expansion speed. Results from PIV measurement indicates that the limited alteration of the in-cylinder bulk flow could be observed with the variation of exhaust valve timing. The in-cylinder fluctuating kinetic energies and their Coefficient of Variations (COVs) decrease with the advance of the exhaust valve timing.
Journal Article

Numerical Study of the Effect of Piston Shapes and Fuel Injection Strategies on In-Cylinder Conditions in a PFI/GDI Gasoline Engine

2014-10-13
2014-01-2670
SI-CAI hybrid combustion, also known as spark-assisted compression ignition (SACI), is a promising concept to extend the operating range of CAI (Controlled Auto-Ignition) and achieve the smooth transition between spark ignition (SI) and CAI in the gasoline engine. In order to stabilize the hybrid combustion process, the port fuel injection (PFI) combined with gasoline direct injection (GDI) strategy is proposed in this study to form the in-cylinder fuel stratification to enhance the early flame propagation process and control the auto-ignition combustion process. The effect of bowl piston shapes and fuel injection strategies on the fuel stratification characteristics is investigated in detail using three-dimensional computational fluid dynamics (3-D CFD) simulations. Three bowl piston shapes with different bowl diameters and depths were designed and analyzed as well as the original flat piston in a single cylinder PFI/GDI gasoline engine.
Technical Paper

Effects of Direct Injection Timing and Air Dilution on the Combustion and Emissions Characteristics of Stratified Flame Ignited (SFI) Hybrid Combustion in a 4-Stroke PFI/DI Gasoline Engine

2020-04-14
2020-01-1139
Controlled Auto-Ignition (CAI) combustion can effectively improve the thermal efficiency of conventional spark ignition (SI) gasoline engines, due to shortened combustion processes caused by multi-point auto-ignition. However, its commercial application is limited by the difficulties in controlling ignition timing and violent heat release process at high loads. Stratified flame ignited (SFI) hybrid combustion, a concept in which rich mixture around spark plug is consumed by flame propagation after spark ignition and the unburned lean mixture closing to cylinder wall auto-ignites in the increasing in-cylinder temperature during flame propagation, was proposed to overcome these challenges.
Technical Paper

Analysis of the Boost System for a High Performance 2-Stroke Boosted Uniflow Scavenged Direct Injection Gasoline (BUSDIG) Engine

2020-09-15
2020-01-2007
A 2-stroke boosted uniflow scavenged direct injection gasoline (BUSDIG) engine was researched and developed at Brunel University London to achieve higher power-to-mass ratio and thermal efficiency. In the BUSDIG engine concept, the intake scavenge ports are integrated to the cylinder liner and controlled by the movement of piston top while exhaust valves are placed in the cylinder head. Systematic studies on scavenging ports, intake plenum, piston design, valve opening profiles and fuel injection strategies have been performed to investigate and optimise the scavenging performance and in-cylinder fuel/air mixing process for optimised combustion process. In order to achieve superior power performance with higher thermal efficiency, the evaluation and optimisation of the boost system for a 1.0 L 2-cylinder 2-stroke BUSDIG engine were performed in this study using one dimensional (1D) engine simulations.
Journal Article

Investigation of Early and Late Intake Valve Closure Strategies for Load Control in a Spark Ignition Ethanol Engine

2017-03-28
2017-01-0643
The more strict CO2 emission legislation for internal combustion engines demands higher spark ignition (SI)engine efficiencies. The use of renewable fuels, such as bioethanol, may play a vital role to reduce not only CO2 emissions but also petroleum dependency. An option to increase SI four stroke engine efficiency is to use the so called over-expanded cycle concepts by variation of the valve events. The use of an early or late intake valve closure reduces pumping losses (the main cause of the low part load efficiency in SI engines) but decreases the effective compression ratio. The higher expansion to compression ratio leads to better use of the produced work and also increases engine efficiency. This paper investigates the effects of early and late intake valve closure strategies in the gas exchange process, combustion, emissions and engine efficiency at unthrottled stoichiometric operation.
Journal Article

Effects of Injection Timing on CAI Operation in a 2/4-Stroke Switchable GDI Engine

2011-08-30
2011-01-1773
A single cylinder direct injection gasoline engine has been developed and commissioned on a transient engine test bed in order to study different engine cycles and combustion modes with identical hardware and operating conditions. The engine can be operated in either 4-stroke cycle or 2-stroke cycle by means of an electro-hydraulic camless system. In addition, both spark ignition and controlled autoignition (CAI) combustion can be achieved. In this paper, effects of the injection timing on different CAI combustion modes are investigated, including the residual gas trapping and exhaust gas rebreathing CAI operations in 4-stroke mode, and also 2-stroke CAI operation, with a stoichiometric air fuel ratio and homogeneous charge used throughout. The performance and emission data are presented and analysed as a function of the injection timing. Results show that the charge cooling effect on the intake flow rate is dependent upon the in-cylinder temperature at the time of injection.
Technical Paper

The Effect on Engine Performance and NO Emissions of a Two-Stage Expansion Cycle in a Spark Ignition Engine

1997-10-01
972991
This paper presents the development of an engine simulation program for SI engines and its application to a two-stage expansion cycle. The two-stage expansion analysis is performed using the engine simulation, where a sudden expansion much faster than the normal expansion takes place during the expansion stroke. The changes in NO emissions and knock tolerance of the resulting new engine cycle are investigated for the same compression ratio. The changes in NO emissions and specific fuel consumption through increasing the compression ratio in order to return to the same amount of work done within the cycle are also studied.
Technical Paper

Study of SI-HCCI-SI Transition on a Port Fuel Injection Engine Equipped with 4VVAS

2007-04-16
2007-01-0199
A strategy to actualize the dual-mode (SI mode and HCCI mode) operation of gasoline engine was investigated. The 4VVAS (4 variable valve actuating system), capable of independently controlling the intake and exhaust valve lifts and timings, was incorporated into a specially designed cylinder head for a single cylinder research engine and a 4VVAS-HCCI gasoline engine test bench was established. The experimental research was carried out to study the dynamic control strategies for transitions between HCCI and SI modes on the HCCI operating boundaries. Results show that equipped with the 4VVAS cylinder head, the engine can be operated in HCCI or SI mode to meet the demands of different operating conditions. 4VVAS enables the rapid and effective control over the in-cylinder residual gas, and therefore dynamic transitions between HCCI and SI can be stably achieved. It is easier to achieve transition from HCCI to SI than reversely due to the influence of thermo-inertia.
Technical Paper

Investigation into Controlled Auto-Ignition Combustion in a GDI Engine with Single and Split Fuel Injections

2007-04-16
2007-01-0211
A multi-cycle three-dimensional CFD engine simulation programme has been developed and applied to analyze the Controlled autoignition (CAI) combustion, also known as homogeneous charge compression ignition (HCCI), in a direct injection gasoline engine. CAI operation was achieved through the negative valve overlap method by means of a set of low lift camshafts. The effect of single injection timing on combustion phasing and underlying physical and chemical processes involved was examined through a series of analytical studies using the multi-cycle 3D engine simulation programme. The analyses showed that early injection into the trapped burned gases of a lean-burn mixture during the negative valve overlap period had a large effect on combustion phasing, due to localized heat release and the production of chemically reactive species. As the injection was retarded to the intake stroke, the charge cooling effect tended to slow down the autoignition process.
Technical Paper

Developing a Fuel Stratification Concept on a Spark Ignition Engines

2007-04-16
2007-01-0476
A fuel stratification concept has been developed in a three-valve twin-spark spark ignition engine. This concept requires that two fuels or fuel components of different octane numbers (ON) be introduced into the cylinder separately through two independent inlet ports. They are then stratified into two regions laterally by a strong tumbling flow and ignited by the spark plug located in each region. This engine can operate in the traditional stratified lean-burn mode at part loads to obtain a good part-load fuel economy as long as one fuel is supplied. At high loads, an improved fuel economy might also be obtained by igniting the low ON fuel first and leaving the high ON fuel in the end gas region to resist knock. This paper gives a detailed description of developing the fuel stratification concept, including optimization of in-cylinder flow, mixture and combustion.
Technical Paper

In-cylinder Studies of Fuel Injection and Combustion from a Narrow Cone Fuel Injector in a High Speed Single Cylinder Optical Engine

2008-06-23
2008-01-1789
Over the last decade, the high speed direct injection (HSDI) diesel engine has made dramatic progress in both its performance and market share in the light duty vehicle market. However, with ever more stringent emission legislation to be introduced over coming years, the simultaneous reduction of NOx and Particulate Matter (PM) from the HSDI diesel engine is being intensively researched. As part of a European Union (EU) NICE integrated project, research has been carried out to investigate the fuel injection and combustion from a narrow cone fuel injector in a high speed direct injection single cylinder engine with optical access utilising a multiple injection strategy and various alternate fuels. The fuel injection process was visualised using a high speed imaging system comprising a copper vapour laser and a high speed video camera. The auto-ignition and combustion process was analysed through the chemiluminescence images of CHO and OH using an intensified CCD camera.
Technical Paper

In-Cylinder Studies of CAI Combustion with Negative Valve Overlap and Simultaneous Chemiluminescence Analysis

2009-04-20
2009-01-1103
The negative valve overlap has been shown as one of the most effective means to achieve controlled autoignition combustion in a four-stroke gasoline engine. A number of researches have been carried out on the performance and emission characteristics of CAI engines but there are still some fundamental questions that are yet to be addressed such as in-cylinder process. In the present study, a Ricardo Hydra single cylinder, four stroke optical gasoline engine was instrumented to investigate CAI combustion through negative valve overlap configuration. The effects of direct fuel injection timings and direct air injection at lambda 1 were studied by means of simultaneous in-cylinder heat release study and high speed images of complete chemiluminescence emission, OH and CHO radicals. In particular, the minor combustion process during the NVO period with various air injection quantities was studied with both heat release analysis and chemiluminescence results.
Technical Paper

4-Stroke Multi-Cylinder Gasoline Engine with Controlled Auto-Ignition (CAI) Combustion: a comparison between Naturally Aspirated and Turbocharged Operation

2008-10-07
2008-36-0305
Controlled Auto-Ignition (CAI) also known as Homogeneous Charge Compression Ignition (HCCI) is increasingly seen as a very effective way of lowering both fuel consumption and emissions. Hence, it is regarded as one of the best ways to meet stringent future emissions legislation. It has however, still many problems to overcome, such as limited operating range. This combustion concept was achieved in a production type, 4-cylinder gasoline engine, in two separated tests: naturally aspirated and turbocharged. Very few modifications to the original engine were needed. These consisted basically of a new set of camshafts for the naturally aspirated test and new camshafts plus turbocharger for the test with forced induction. After previous experiments with naturally aspirated CAI operation, it was decided to investigate the capability of turbocharging for extended CAI load and speed range.
Technical Paper

In-Cylinder Measurements of Fuel Stratification in a Twin-Spark Three-Valve SI Engine

2004-03-08
2004-01-1354
In order to take advantage of different properties of fuel components or fractions, a new concept of fuel stratification has been proposed by the authors. This concept requires that two fractions of standard gasoline (e.g., light and heavy fractions) or two different fuels in a specially formulated composite be introduced into the cylinder separately through two separate intake ports. The two fuels will be stratified into two regions in the cylinder by means of strong tumble flows. In order to verify and optimize the fuel stratification, a two-tracer Laser Induced Fluorescence (LIF) technique was developed and applied to visualize fuel stratification in a three-valve twin-spark SI engine. This was realized by detecting simultaneously fluorescence emissions from 3-pentanone in one fuel (hexane) and from N,N-dimethylaniline (DMA) in the other fuel (iso-octane).
Technical Paper

Analysis of Tumble and Swirl Motions in a Four-Valve SI Engine

2001-09-24
2001-01-3555
Tumble and swirl motions in the cylinder of a four-valve SI engine with production type cylinder head were investigated using a cross-correlation digital Particle Image Velocimetry (PIV). Tumble motion was measured on the vertical symmetric plane of the combustion chamber. Swirl motion was measured on a plane parallel to the piston crown with one of intake ports blocked. Large-scale flow behaviours and their cyclic variations were analysed from the measured two-dimensional velocity data. Results show that swirl motion is generated at the end of the intake stroke and persists to the end of the compression stroke. Tumble vortex is produced in the early stage of the compression stroke and distorted in the late stage of the stroke. The cyclic variation of swirl motion is noticeable. The cyclic variation in tumble dominated flow field is much greater.
Technical Paper

Performance and Analysis of a 4-Stroke Multi-Cylinder Gasoline Engine with CAI Combustion

2002-03-04
2002-01-0420
Controlled Auto-Ignition (CAI) combustion was realised in a production type 4-stroke 4-cylinder gasoline engine without intake charge heating or increasing compression ratio. The CAI engine operation was achieved using substantially standard components modified only in camshafts to restrict the gas exchange process The engine could be operated with CAI combustion within a range of load (0.5 to 4 bar BMEP) and speed (1000 to 3500 rpm). Significant reductions in both specific fuel consumption and CO emissions were found. The reduction in NOx emission was more than 93% across the whole CAI range. Though unburned hydrocarbons were higher under the CAI engine operation. In order to evaluate the potential of the CAI combustion technology, the European NEDC driving cycle vehicle simulation was carried out for two identical vehicles powered by a SI engine and a CAI/SI hybrid engine, respectively.
Technical Paper

Optimisation of In-Cylinder Flow for Fuel Stratification in a Three-Valve Twin-Spark-Plug SI Engine

2003-03-03
2003-01-0635
In-cylinder flow was optimised in a three-valve twin-spark-plug SI engine in order to obtain good two-zone fuel fraction stratification in the cylinder by means of tumble flow. First, the in-cylinder flow field of the original intake system was measured by Particle Image Velocimetry (PIV). The results showed that the original intake system did not produce large-scale in-cylinder flow and the velocity value was very low. Therefore, some modifications were applied to the intake system in order to generate the required tumble flow. The modified systems were then tested on a steady flow rig. The results showed that the method of shrouding the lower part of the intake valves could produce rather higher tumble flow with less loss of the flow coefficient than other methods. The optimised intake system was then consisted of two shroud plates on the intake valves with 120° angles and 10mm height. The in-cylinder flow of the optimised intake system was investigated by PIV measurements.
Technical Paper

Impact of Port Fuel Injection and In-Cylinder Fuel Injection Strategies on Gasoline Engine Emissions and Fuel Economy

2016-10-17
2016-01-2174
As the emission regulations for internal combustion engines are becoming increasingly stringent, different solutions have been researched and developed, such as dual injection systems (combined port and direct fuel injection), split injection strategies (single and multiple direct fuel injection) and different intake air devices to generate an intense in-cylinder air motion. The aim of these systems is to improve the in-cylinder mixture preparation (in terms of homogeneity and temperature) and therefore enhance the combustion, which ultimately increases thermal efficiency and fuel economy while lowering the emissions. This paper describes the effects of dual injection systems on combustion, efficiency and emissions of a downsized single cylinder gasoline direct injection spark ignited (DISI) engine. A set of experiments has been conducted with combined port fuel and late direct fuel injection strategy in order to improve the combustion process.
Technical Paper

The Upper-Load Extension of a Boosted Direct Injection Poppet Valve Two-Stroke Gasoline Engine

2016-10-17
2016-01-2339
Engine downsizing can effectively improve the fuel economy of spark ignition (SI) gasoline engines, but extreme downsizing is limited by knocking combustion and low-speed pre-ignition at higher loads. A 2-stroke SI engine can produce higher upper load compared to its naturally aspirated 4-stroke counterpart with the same displacement due to the double firing frequency at the same engine speed. To determine the potential of a downsized two-cylinder 2-stroke poppet valve SI gasoline engine with 0.7 L displacement in place of a naturally aspirated 1.6 L gasoline (NA4SG) engine, one-dimensional models for the 2-stroke gasoline engine with a single turbocharger and a two-stage supercharger-turbocharger boosting system were set up and validated by experimental results.
X