Refine Your Search

Topic

Author

Affiliation

Search Results

Training / Education

Ignition Issues and Their Impact on Engine Performance, Efficiency and Emission

Improved understanding and control of ignition and thereby combustion are critical in dealing with the problems of pollutants formation, engine performance, and fuel economy. This seminar will provide you with basic knowledge and recent advances in combustion-initiation (ignition) issues to more intelligently evaluate and harness their potentials. Thermodynamic and fluid mechanical properties of the unburned charge near the spark plug and at the time of ignition strongly affect the quality of the combustion and therefore the emission of the pollutants from the engine. Furthermore, a weak ignition limits engine performance and drivability.
Training / Education

Introduction to Commercial and Off-Road Vehicle Cooling Airflow Systems

Vehicle functional requirements, emission regulations, and thermal limits all have a direct impact on the design of a powertrain cooling airflow system. Given the expected increase in emission-related heat rejection, suppliers and vehicle manufacturers must work together as partners in the design, selection, and packaging of cooling system components. An understanding and appreciation of airflow integration issues and vehicle-level trade-offs that effect system performance are important to the team effort. The severe duty cycles, minimal ram air, and sometimes unconventional package layouts present unique challenges.
Training / Education

Automotive Heat Transfer

Heat transfer affects the performance, emissions and durability of the engine as well as the design, packaging, material choice and fatigue life of vehicle components. This course covers the broad range of heat transfer considerations that arise during the design and development of the engine and the vehicle with a primary focus on computational models and experimental validation covering the flow of heat from its origin in the engine cylinders and its transfer via multiple paths through engine components.
Training / Education

Turbocharging Internal Combustion Engines

2019-09-16
The need to control emissions and maintain fuel economy is driving the use of advanced turbocharging technology in both diesel and gasoline engines. As the use of diesel engines in passenger car gasoline and diesel engines increases, a greater focus on advanced turbocharging technology is emerging in an effort to reap the benefits obtained from turbocharging and engine downsizing. This seminar covers the basic concepts of turbocharging of gasoline and diesel engines (light and heavy duty), including turbocharger matching and charge air and EGR cooling, as well as associated controls.
Training / Education

Variable Valve Actuation Design and Performance Impact on Advanced Powertrains

2019-06-17
Engine valvetrain systems have become more capable and increasingly more compact in the quest to improve efficiency. The developments parallel the advancements in other key engine components such as fuel injection or spark systems, turbocharging, aftertreatment, base engine and controls. While the gasoline sector has seen a steady rise in the adoption of Variable Valve Actuation (VVA), Diesel systems have lagged behind and only a few systems have seen production. The level of VVA activity however in the Diesel sector is beginning to increase as tighter regulations of CO2 emissions approach.
Training / Education

Fundamentals of Powertrain Design for Hybrid Electric Vehicles

2019-05-21
Driven by high fuel prices, environmental regulations, and consumer demand, the market for hybrid electric vehicles (HEV) has experienced rapid growth. Every major automotive company produces an HEV. There are approximately fifty different HEV models on the market and over eight million HEVs already sold. In order to meet current and future demands in the HEV and PHEV markets, success will depend on engineering personnel knowing how to develop and manufacture HEV powertrains. This two day seminar will cover the fundamentals of HEV powertrain design.
Training / Education

Control Systems Simplified

2019-03-11
The advent of digital computers and the availability of ever cheaper and faster micro processors have brought a tremendous amount of control system applications to the automotive industry in the last two decades. From engine and transmission systems, to virtually all chassis subsystems (brakes, suspensions, and steering), some level of computer control is present. Control systems theory is also being applied to comfort systems such as climate control and safety systems such as cruise control or collision mitigation systems.
Training / Education

Fundamental Concepts of Turbocharging Modern Engines Current Practices and Trends

2018-11-06
Turbocharging is rapidly becoming an integral part of many internal combustion engine systems. While it has long been a key to diesel engine performance, it is increasingly seen as an enabler in meeting many of the efficiency and performance requirements of modern automotive gasoline engines. This web seminar will discuss the basic concepts of turbocharging and air flow management of four-stroke engines. The course will explore the fundamentals of turbocharging, system design features, performance measures, and matching and selection criteria.
Training / Education

The Basics of Internal Combustion Engines

2018-10-29
In your profession, an educated understanding of internal combustion engines is required, not optional. This two-day technology survey seminar covers the most relevant topics - ranging from the chemistry of combustion to the kinematics of internal components of the modern internal combustion engine - for maximum comprehension. Attendees will gain a practical, hands-on approach to the basics of the most common designs of internal combustion engines, as they apply to the gaseous cycles, thermodynamics and heat transfer to the major components, and the design theories that embody these concepts.
Video

Neural Network-based Optimal Control for Advanced Vehicular Thermal Management Systems

2011-12-05
Advanced vehicular thermal management system can improve engine performance, minimize fuel consumption, and reduce emissions by harmoniously operating computer-controlled servomotor components. In this paper, a neural network-based optimal control strategy is proposed to regulate the engine temperature through the advanced cooling system. Presenter Asma Al Tamimi, Hashemite University
Video

Cooling Airflow System Modeling in CFD Using Assumption of Stationary Flow

2011-11-29
Today CFD is an important tool for engineers in the automotive industry who model and simulate fluid flow. For the complex field of Underhood Thermal Management, CFD has become a very important tool to engineer the cooling airflow process in the engine bay of vehicles. Presenter Peter Gullberg, Chalmers University of Technology
Video

Best Practices for In-Vehicle Network Development

2011-12-05
The number of electronically controlled systems in commercial vehicles is increasing rapidly. Much of this electrical content is controlled using ECUs (Electronic Control Units) which share information using some type of networking technology, such as a CAN bus running the SAE J1939 protocol. Presenter Jeffrey Craig, Vector CANtech Inc.
Video

High Load HCCI Operation Using Different Valving Strategies in a Naturally-Aspirated Gasoline HCCI Engine

2012-02-16
This session focuses on kinetically controlled combustion. Experimental and simulation studies pertaining to various means of controlling combustion are welcome. Examples are research studies dealing with temperature and composition distribution inside the cylinder and their impact on heat release process. Studies clarifying the role of fuel physical and chemical properties in autoignition are also welcome. Presenter Hanho Yun, General Motors Company
Video

Advances of Virtual Testing and Hybrid Simulation in Automotive Performance and Durability Evaluation

2012-02-15
Virtual testing is a method that simulates lab testing using multi-body dynamic analysis software. The main advantages of this approach include that the design can be evaluated before a prototype is available and virtual testing results can be easily validated by subsequent physical testing. The disadvantage is that accurate specimen models are sometimes hard to obtain since nonlinear components such as tires, bushings, dampers, and engine mounts are hard to model. Therefore, virtual testing accuracy varies significantly. The typical virtual rigs include tire and spindle coupled test rigs for full vehicle tests and multi axis shaker tables for component tests. Hybrid simulation combines physical and virtual components, inputs and constraints to create a composite simulation system. Hybrid simulation enables the hard to model components to be tested in the lab.
Video

Experimental Study into a Hybrid PCCI/CI Concept for Next-Generation Heavy-Duty Diesel Engines

2012-06-18
This paper presents the first results of an experimental study into a hybrid combustion concept for next-generation heavy-duty diesel engines. In this hybrid concept, at low load operating conditions, the engine is run in Pre-mixed Charge Compression Ignition (PCCI) mode, whereas at high load conventional CI combustion is applied. This study was done with standard diesel fuel on a flexible multi-cylinder heavy-duty test platform. This platform is based on a 12.9 liter, 390 kW heavy-duty diesel engine that is equipped with a combination of a supercharger, a two-stage turbocharging system and low-pressure and high-pressure EGR circuitry. Furthermore, Variable Valve Actuation (VVA) hardware is installed to have sufficient control authority. Dedicated pistons, injector nozzles and VVA cam were selected to enable PCCI combustion for a late DI injection strategy, free of wall-wetting problems.
Video

2-Stroke CAI Combustion Operation in a GDI Engine with Poppet Valves

2012-06-18
In order to extend the CAI operation range in 4-stroke mode and maximize the benefit of low fuel consumption and emissions in CAI mode, 2-stroke CAI combustion is revived operating in a GDI engine with poppet valves, where the conventional crankcase scavenging is replaced by boosted scavenging. The CAI combustion is achieved through the inherence of the 2-Stroke operation, which is retaining residual gas. A set of flexible hydraulic valve train was installed on the engine to vary the residual gas fraction under the boosting condition. The effects of spark timing, intake pressure and short-circuiting on 2-stroke CAI combustion and its emissions are investigated and discussed in this paper. Results show the engine could be controlled to achieve CAI operation over a wide range of engine speed and load in the 2-stroke mode because of the flexibility of the electro-hydraulic valvetrain system. Presenter Yan Zhang, Brunel University
Video

Spotlight on Design: Sensors: Miniaturization and Testing

2015-04-15
“Spotlight on Design” features video interviews and case study segments, focusing on the latest technology breakthroughs. Viewers are virtually taken to labs and research centers to learn how design engineers are enhancing product performance/reliability, reducing cost, improving quality, safety or environmental impact, and achieving regulatory compliance. Accurate data is critical for the testing and development of parts and systems for cars, trucks, and airplanes. To obtain this data, engineers rely on high-end specialty sensors that can fit into cramped spaces and operate reliably under extreme heat and pressure. In the episode “Sensors: Miniaturization and Testing” (21:02), AVL engineers explain how a new crystalline material was developed to accurately measure the high pressures in the combustion chamber of turbocharged engines, and Meggitt Sensing Systems profiles the world’s smallest triaxial IEPE accelerometer.
X