Refine Your Search

Topic

Author

Affiliation

Search Results

Training / Education

Application Development of Electric Vehicles and Hybrid Electric Vehicles Balancing Economic Objectives and Technical Requirements

This course is offered in China only and presented in Mandarin Chinese. The course materials are bilingual (English and Chinese).   More and more stringent emission and fuel consumption regulations are pushing the automotive industry toward electrified powertrain and electrified vehicles. This is particularly evident in China, where there is an increased demand for  (EV) and (HEV). Infrastructure is being built across the country for convenient charging. It must now be determined how to meet the technical targets for EV/HEV regulations under economic constraints and how to best develop the major ePowertrain components (battery and motor).
Training / Education

EMC Design for PCB Design for New Energy Vehicles

This course is offered in China only and presented in Mandarin Chinese. Developing environmentally cleaner and more fuel efficient vehicles is transforming the automotive industry worldwide. There are many engineering challenges that must be addressed in designing effective new energy vehicles. The technical knowledge required to understand and make the right decisions with regard to powertrain architecture, powertrain controls, and energy management strategies is critical to success in this market.
Training / Education

The Principles and Applications of Powertrain Controls for the New Energy Vehicles

课程概述 Powertrain controls for NEVs are one of the most complex and highly confidential areas of NEV research and development.  This two-day course takes the seemingly complicated field of NEV powertrain controls and summarizes it into a few basic principles.  The latest and most popular NEV powertrains are also reviewed to illustrate these principles and the controls strategies used.  对于新能源汽车来说,动力总成控制一直以来都是最复杂的和高度机密的领域之一。在这两天的课程中,我们将把看似复杂的动力总成控制系统总结出几条基本规则,同时,通过对当今其他车型动力控制系统的案例分析,来把这些规则和原理进行融会贯通。
Training / Education

Powertrain Product Development for Electrified Vehicles

This course is offered in China only and presented in Mandarin Chinese. The course materials are bilingual (English and Chinese). Transmission and driveline products for new energy vehicles are different in many aspects from their counterparts in traditional vehicles. Participants will have a chance to develop in-depth, practical, and hands-on knowledge regarding system configuration, key subsystems and components design, system control, testing, design verification, and so forth. Common problems such as reliability, durability, NVH as well as related technology trends will be addressed from an engineer's viewpoint.
Training / Education

Design of Experiments - Basic Simplified Taguchi

Design of Experiments is a statistically based, structured approach to product or process improvement that will quickly yield significant increases in product quality and subsequent decreases in cost.  Products and processes can be designed to function with less variation and with less sensitivity to environmental factors or customer usage. While still maintaining high quality from a customer's viewpoint, products and processes can utilize lower cost materials and methods.  Specifications can be opened-up with wider tolerances while still maintaining high quality for customers.  
Training / Education

Fundamentals of Powertrain Design for Hybrid Electric Vehicles

This course is offered in China only and presented in Mandarin Chinese. The course materials are bilingual (English and Chinese). Driven by high fuel prices, environmental regulations, and consumer demand, the market for hybrid electric vehicles (HEV) has experienced rapid growth. Every major automotive company produces an HEV. There are approximately fifty different HEV models on the market and over eight million HEVs already sold. In order to meet current and future demands in the HEV and PHEV markets, success will depend on engineering personnel knowing how to develop and manufacture HEV powertrains.
Training / Education

Fundamentals of Hybrid Electric Vehicles and Related Technologies

This course is offered in China only and presented in Mandarin Chinese. The course materials are bilingual (English and Chinese). Hybrid electric vehicles continue to be a part of the overall solution toward zero emission vehicles. To meet current and future demands in the HEV and PHEV markets, success will depend on engineering and support personnel having and maintaining a thorough understanding of HEV related technologies.
Training / Education

Powertrain Architecture, Controls, and Energy Management Systems of EV and HEV

This course is offered in China only and presented in Mandarin Chinese. The course materials are bilingual (English and Chinese). Developing environmentally cleaner and more fuel efficient vehicles is transforming the automotive industry worldwide, particularly in China with its emphasis on new energy vehicles. There are many engineering challenges that must be addressed in designing effective new energy vehicles. The technical knowledge required to understand and make the right decisions with regard to powertrain architecture, powertrain controls, and energy management strategies is critical to success in this market.
Training / Education

Fundamentals and Applications of Electric Motors for Automotive Industries

As the electrification of automobiles is on the rise, it is imperative that the capabilities and limits of the associated devices and systems be understood at a higher level than previously considered adequate. For example, the Tesla Model S has 62 electric motors while the Model X has 70! They propel the vehicle and provide comfort too. Their design must reflect the worst case operating scenarios, duty cycles, environment, country of use and its standards, etc.
Training / Education

EV Motor Design Analysis and Test Verification

This course, designed for EV motor engineers and graduate participants, systematically introduces EV motor design analysis and test verification. Combined with engineering practice, it discusses typical EV motor design cases and practical issues related to EV motor technology, aiming to broaden the horizon of EV motor design engineers and improve their problem-solving skills.
Training / Education

Smart Mobility in Smart Cities

This course enables transportation professionals to optimize smart mobility for maximum return within smart cities. It offers a structured introduction to the subjects and makes use of real-life examples, local government, technology solution providers, and consulting. The course integrates insights and understandings related to the best use of technology, best practices, lessons learned, challenges, and opportunities. 
Training / Education

Product Development for AV and EV Reliability

According to NHTSA, there were 932 vehicle recalls in the United States in 2022, affecting approximately 31 million vehicles; 39 electric vehicle recalls affecting more than 1.3 million vehicles, and 56 ADAS recalls affecting more than 4.7 million vehicles. Furthermore, Warranty Week reports that Worldwide Auto Manufacturers allocated a total of $54.7 billion for future warranty repairs or $670 per vehicle sold in 2022. 2023 Consumer Report indicates that Electrical Vehicles have 79% more reliability issues than ICE vehicles.
Training / Education

Agile Model-Based Software Development

Model-based software development has become state of the art for automotive embedded applications. Toolchains have been established, and methods and procedures have been defined to address the strong requirements of functional safety standards. Best practices within general software development, however, propose to overcome strict waterfall process models and promote agile methods in order to address real-world challenges, such as late changes or vague requirements. These real-world scenarios exist in automotive software development, and agile methods will also be beneficial here.
Training / Education

Introduction to Model-based Development and Quality Assurance of Embedded Software

This training class provides a practical overview of developing and safeguarding embedded software on the basis of Simulink and code generators like Embedded Coder and TargetLink within the framework of serial projects. The training class takes participants through all process steps from designing and creating the simulation model in Simulink and Stateflow to generating production code. Model quality assurance consists of verifying the model and software architecture, safeguarding the modeling guidelines, as well as checking for functional compliance with requirements in the model test.
Training / Education

ISO 26262 Tool Classification and Qualifications

As part of the release of ISO 26262 in 2011, requirements to establish confidence in the correct functioning of software tools used to develop safety-related automotive E/E systems came into effect. A decade later, there are plenty of experiences and lessons learned from applying these requirements in day-to-day engineering. However, implementing ISO 26262 tool classification and qualification remains a challenge for many automotive organizations and remains resource intensive.
Training / Education

MXAM – Modeling Guidelines and Architectural Design Principles

This training class will introduce you to fundamental aspects of working with modeling guidelines and to the static model analysis of MATLAB Simulink/Stateflow, TargetLink, and Embedded Coder models. Furthermore, you will learn how to create MISRA- and ISO 26262-compliant models using proven modeling standards and best practices. The spotlight will be placed on how you can best integrate the MES Model Examiner (MXAM) into your process. Via several hands-on sessions, you will have the chance to practice reliably deploying guidelines with MXAM and ensure guideline compliance.
Training / Education

Testing Models the Right Way – From Requirements to Model Testing

This training class provides a comprehensive overview of the principles, processes, and objectives of model testing – from requirements to model tests. We offer step-by-step guidance from creating requirements-based test specifications, through testing TargetLink and/or Embedded Coder models, to automated test evaluation based on test assessments and back-to-back/regression tests. In particular, we will emphasize ISO 26262-compliant test management and explain the test process for MiL and SiL, as well as tracing requirements to test specifications and test assessments.
Training / Education

Safety Analyses in the Context of ISO 26262

Inductive and deductive safety analyses play an essential role within the ISO 26262 safety life cycle. Qualitative analysis methods are used to identify failures whereas quantitative methods are utilized to predict the frequency of failures. This one-day training class introduces the fundamentals of common safety analysis methods such as FMEA, FMEDA, and FTA and discusses the role of these methods in the development of safety-related E/E systems as per ISO 26262.
Training / Education

Safety of the Intended Functionality (SOTIF) for Automotive Professionals

Ensuring the safety of a driving automation system encompasses two aspects, namely (1) the avoidance of unreasonable risk caused by malfunctioning behavior of the system as well as (2) the avoidance of unreasonable risk caused by hazards associated with the intended functionality and its implementation, e.g. due to performance limitations. The first aspect - known as functional safety - has been addressed by the industry for quite some time already and is described by the established ISO 26262 standard.
Training / Education

DFMEA Overview, Application and Facilitation

This course is verified by Probitas as meeting the AS9104/3A requirements for Continuing Professional Development. This course serves a dual purpose: it delves into fundamental DFMEA principles and their practical applications while also offering guidance on leading DFMEA teams. Participants will be introduced to crucial FMEA concepts, along with the theoretical foundations before exploring how to implement these concepts in their DFMEA endeavors. Often, the FMEA process can become a mere replication of past efforts, which poses risks for both organizations developing the products under scrutiny and the end-users.
X