Refine Your Search

Topic

Search Results

Viewing 1 to 20 of 20
Journal Article

Development of a 3rd Generation SCR NH3-Direct Dosing System for Highly Efficient DeNOx

2012-04-16
2012-01-1078
In this project funded by the Bayerische Forschungsstiftung two fundamental investigations had been carried out: first a new N-rich liquid ammonia precursor solution based on guanidine salts had been completely characterized and secondly a new type of side-flow reactor for the controlled catalytic decomposition of aqueous NH₃ precursor to ammonia gas has been designed, applied and tested in a 3-liter passenger car diesel engine. Guanidine salts came into the focus due to the fact of a high nitrogen-content derivate of urea. Specially guanidinium formate has shown extraordinary solubility in water (more than 6 kg per 1 liter water at room temperature) and therefore a possible high ammonia potential per liter solution compared to the classical 32.5% aqueous urea solution (AUS32) standardized in ISO 22241 and known as DEF (diesel emission fluid), ARLA32 or AdBlue® .
Technical Paper

Experimental Investigation of Orifice Design Effects on a Methane Fuelled Prechamber Gas Engine for Automotive Applications

2017-09-04
2017-24-0096
Due to its molecular structure, methane provides several advantages as fuel for internal combustion engines. To cope with nitrogen oxide emissions high levels of excess air are beneficial, which on the other hand deteriorates the flammability and combustion duration of the mixture. One approach to meet these challenges and ensure a stable combustion process are fuelled prechambers. The flow and combustion processes within these prechambers are highly influenced by the position, orientation, number and overall cross-sectional area of the orifices connecting the prechamber and the main combustion chamber. In the present study, a water-cooled single cylinder test engine with a displacement volume of 0.5 l is equipped with a methane-fuelled prechamber. To evaluate influences of the aforementioned orifices several prechambers with variations of the orientation and number of nozzles are used under different operating conditions of engine speed and load.
Technical Paper

Extensive Investigation of a Common Rail Diesel Injector Regarding Injection Characteristics and the Resulting Influences on the Dual Fuel Pilot Injection Combustion Process

2016-04-05
2016-01-0780
Natural gas and especially biogas combustion can be seen as one of the key technologies towards climate-neutral energy supply. With its extensive availability, biogas is amongst the most important renewable energy sources in the present energy mix. Today, the use of gaseous fuels is widely established, for example in cogeneration units for combined heat and power generation. In contrast to conventional spark plug ignition, the combustion can also be initialized by a pilot injection. In order to further increase engine efficiency, this article describes the process for a targeted optimization of the pilot fuel injection. One of the crucial points for a more efficient dual fuel combustion process, is to optimize the amount of pilot injection in order to increase overall engine efficiency, and therefore decrease fuel consumption. In this connection, the injection system plays a key role.
Technical Paper

Cetane Number Determination by Advanced Fuel Ignition Delay Analysis in a New Constant Volume Combustion Chamber

2015-04-14
2015-01-0798
A new constant volume combustion chamber (CVCC) apparatus is presented that calculates the cetane number (CN) of fuels from their ignition delay by means of a primary reference fuel calibration. It offers the benefits of low fuel consumption, suitability for non-lubricating substances, accurate and fast measurements and a calibration by primary reference fuels (PRF). The injection system is derived from a modern common-rail passenger car engine. The apparatus is capable of fuel injection pressures up to 1200 bar and requires only 40 ml of the test fuel. The constant volume combustion chamber can be heated up to 1000 K and pressurized up to 50 bar. Sample selection is fully automated for independent operation and low levels of operator involvement. Capillary tubes employed in the sampling system can be heated to allow the measurement of highly viscous fuels.
Journal Article

Development of a High Turbulence, Low Particle Number, High Injection Pressure Gasoline Direct Injection Combustion System

2016-11-16
2016-01-9046
In the present work the benefit of a 50 MPa gasoline direct injection system (GDI) in terms of particle number (PN) emissions as well as fuel consumption is shown on a 0.5 l single cylinder research engine in different engine operating conditions. The investigations show a strong effect of injection timing on combustion duration. As fast combustion can be helpful to reduce fuel consumption, this effect should be investigated more in detail. Subsequent analysis with the method of particle image velocimetry (PIV) at the optical configuration of this engine and three dimensional (3D) computational fluid dynamics (CFD) calculations reveal the influence of injection timing on large scale charge motion (tumble) and the level of turbulent kinetic energy. Especially with delayed injection timing, high combustion velocities can be achieved. At current series injection pressures, the particle number emissions increase at late injection timing.
Technical Paper

Review of Potential CO2-Neutral Fuels in Passenger Cars in Context of a Possible Future Hybrid Powertrain

2021-09-21
2021-01-1229
To minimize the impact of global warming worldwide, net greenhouse-gas (GHG) emissions have to be reduced. The transportation sector is one main contributor to overall greenhouse gas emissions due to the fact that most of the current propulsion systems rely on fossil fuels. The gasoline engine powertrain is the most used system for passenger vehicles in the EU and worldwide. Besides emitting GHG, gasoline driven cars emit harmful pollutants, which can cause health issues for humans. Hybrid powertrains provide an available short-term solution to reduce fuel consumption and thus overall emissions. Therefore, an overview of the currently available technology and methodology of hybrid cars is provided in this paper as well as an overview of the performance of current HEV cars in real world testing. From the testing, it can be concluded that despite reducing harmful emissions, hybrid vehicles still emit pollutants and GHG when fueled with conventional gasoline.
Technical Paper

Engine Operation Strategies for the Alternative Diesel Fuel Oxymethylene Ether (OME): Evaluation Based on Injection Rate Analyzer and 0D-/1D-Simulation

2021-09-21
2021-01-1190
Polyoxymethylene dimethyl ethers (OME) are promising alternative diesel fuels with a biogenic or electricity-based production, which offer carbon neutral mobility with internal combustion engines. Among other e-fuels, they stand out because of soot-free combustion, which resolves the trade-off between nitrogen oxide (NOx) and soot emissions. Additionally, long-chain OME have a high ignitability, indicated by a cetane number (CN) greater than 70. This opens up degrees of freedom in the injection strategy and enables simplifications compared to the operation with fossil diesel. This study investigates the hydraulic behavior of two solenoid injectors with different injector geometry for heavy-duty applications on an Injection Rate Analyzer (IRA) in diesel and OME operation. For OME, both injectors show longer injection delays in all injection pressure ranges investigated, increasing with rail pressure.
Technical Paper

Injection Process of the Synthetic Fuel Oxymethylene Ether: Optical Analysis in a Heavy-Duty Engine

2020-09-15
2020-01-2144
Oxygenated synthetic fuels such as oxymethylene ether (OME) are a promising approach to reduce the emissions of diesel engines and to improve sustainability of mobility. The soot-free combustion of OME allows an optimization of the combustion process to minimize remaining pollutants. Considering the injection system, one strategy is to decrease the rail pressure, which has a positive impact on the reduction of nitrogen oxides without increasing the particle formation. Furthermore, due to the reduced lower heating value of OME compared to diesel fuel, an adaptation of the injector nozzle is recommended. This work describes a method for analyzing the injection process for OME, using the Mie scattering effect in an optically accessible heavy-duty diesel engine. The design of the 1.75 l single cylinder engine allows operation up to 300 bar peak cylinder pressure, providing optical access through the piston bowl and through a second window lateral below the cylinder head.
Technical Paper

Optical Investigations of an Oxygenated Alternative Fuel in a Single Cylinder DISI Light Vehicle Gasoline Engine

2021-04-06
2021-01-0557
In this study, a fully optically accessible single-cylinder research engine is the basis for the visualization and generation of extensive knowledge about the in-cylinder processes of mixture formation, ignition and combustion of oxygenated synthetic fuels. Previous measurements in an all-metal engine showed promising results by using a mixture of dimethyl carbonate and methyl formate as a fuel substitute in a DISI-engine. Lower THC and NOx emissions were observed along with a low PN-value, implying low-soot combustion. The flame luminosity transmitted via an optical piston was split in the optical path to simultaneously record the natural flame luminosity with an RGB high-speed camera. The second channel consisted of OH*-chemiluminescence recording, isolated by a bandpass filter via an intensified monochrome high-speed camera.
Technical Paper

Fuel Dosing on a Diesel Oxidation Catalyst for After-Treatment System Heating on a Heavy-Duty Engine Powered by Polyoxymethylene Dimethyl Ethers

2020-09-15
2020-01-2157
Polyoxymethylene dimethyl ethers (OME) are synthetic fuels, which offer the property of sustainability because the reactants of production base on hydrogen and carbon dioxide on the one hand, and the air pollution control in consequence of a soot-free combustion in a diesel engine on the other hand. High exhaust gas recirculation (EGR) rates are a promising measure for nitrogen oxide (NOx) reduction without increasing particle emissions because of the resolved soot-NOx trade-off. However, EGR rates towards stoichiometric combustion in OME operation reveals other trade-offs such as methane and formaldehyde emissions. To avoid these, a lean mixture with a combination of EGR and exhaust after-treatment with selective catalytic reduction (SCR) is useful. The limitation of urea dosing due to the light-off temperature of SCR systems requires heating measures.
Technical Paper

Optimization of the Mixture Formation for Combined Injection Strategies in High-Performance SI-Engines

2015-09-06
2015-24-2476
Alongside with the severe restrictions according to technical regulations of the corresponding racing series (air and/or fuel mass flow), the optimization of the mixture formation in SI-race engines is one of the most demanding challenges with respect to engine performance. Bearing in mind its impact on the ignition behavior and the following combustion, the physical processes during mixture formation play a vital role not only in respect of the engine's efficiency, fuel consumption, and exhaust gas emissions but also on engine performance. Furthermore, abnormal combustion phenomena such as engine knock may be enhanced by insufficient mixture formation. This can presumably be explained by the strong influence of the spatial distribution of the air/fuel-ratio on the inflammability of the mixture as well as the local velocity of the turbulent flame front.
Technical Paper

Detection of Stationary Operating States of Internal Combustion Engines

2015-04-14
2015-01-1643
Modern methods of engine development use complex mathematical models. Adding advanced components such as variable valve trains or direct injection systems to the model increases the degrees of freedom resulting in a high number of measurements for validation. Steadily rising costs for development, time and staff make it crucial for industry to improve the quality of measurements with advanced analysis techniques. Often, such models consider the simulated system as stationary, implying that system variables no longer change with time. This paper presents an internal combustion engine measurement system utilizing algorithms for the real-time evaluation of the state of the engine or its components. Several approaches have been reviewed and tested regarding their applicability. The most straightforward algorithms compare the gradient of a sensor signal to a pre-defined threshold.
Technical Paper

Virtual Investigation of Real Fuels by Means of 3D-CFD Engine Simulations

2019-09-09
2019-24-0090
The reduction of both harmful emissions (CO, HC, NOx, etc.) and gases responsible for greenhouse effects (especially CO2) are mandatory aspects to be considered in the development process of any kind of propulsion concept. Focusing on ICEs, the main development topics are today not only the reduction of harmful emissions, increase of thermodynamic efficiency, etc. but also the decarbonization of fuels which offers the highest potential for the reduction of CO2 emissions. Accordingly, the development of future ICEs will be closely linked to the development of CO2 neutral fuels (e.g. biofuels and e-fuels) as they will be part of a common development process. This implies an increase in development complexity, which needs the support of engine simulations. In this work, the virtual modeling of real fuel behavior is addressed to improve current simulation capabilities in studying how a specific composition can affect the engine performance.
Technical Paper

Nitrogen Oxide Reduction Potentials Using Dimethyl Ether and Oxymethylene Ether in a Heavy-Duty Diesel Engine

2020-10-01
2020-01-5084
The synthetic fuels dimethyl ether (DME) and polyoxymethylene dimethylether (POMDME or OME) are promising oxygenated fuels to meet the rising challenges of air pollution control, CO2-neutrality, and sustainability. The sootless combustion and high ignitability of DME and OME represent ideal properties for an application in diesel engines. However, recent investigations of oxygenates reported an increase of nanoparticles, which are known to have fatal effects on human’s health. Besides nanoparticles, ongoing discussions about future emission legislation focus on a drastic reduction of NOx. For this reason, the present work investigates different measures to reduce NOx emissions using DME/OME and a paraffinic diesel fuel (PDF) as reference. Different rail pressures, exhaust gas recirculation (EGR) rates, and injection timings are evaluated, considering the effectivity on NOx reduction and the impact on other emissions, especially on nanoparticles.
Technical Paper

Piston Design Optimization for a Two-Cylinder Lean-Burn Natural Gas Engine - 3D-CFD-Simulation and Test Bed Measurements

2014-04-01
2014-01-1326
The development of today's drivetrains focusses on the reduction of vehicles' CO2-emissions. Therefore, a drivetrain for urban and commuter traffic is under development at the Institute of Internal Combustion Engines. The concept is based on a lean-burn air cooled two-cylinder natural gas engine, which is combined with a hydraulic hybrid system. On the one hand, lean-burn combustion leads to low nitrogen oxides emissions and high thermal efficiency. On the other hand, there are several challenges concerning inflammability, combustion stability and combustion duration. An approach to optimize the combustion process is the design of the piston bowl. The paper presents the engine concept at first. Afterwards, a description of design parameters for pistons of natural gas engines and a technical overview of piston bowls is given. Subsequent to the analysis of the different piston bowls, a new design approach is presented.
Technical Paper

Investigation of an Innovative Combustion Process for High-Performance Engines and Its Impact on Emissions

2019-01-15
2019-01-0039
Over the past years, the question as to what may be the powertrain of the future has become ever more apparent. Aiming to improve upon a given technology, the internal combustion engine still offers a number of development paths in order to maintain its position in public and private mobility. In this study, an innovative combustion process is investigated with the goal to further approximate the ideal Otto cycle. Thus far, similar approaches such as Homogeneous Charge Compression Ignition (HCCI) shared the same objective yet were unable to be operated under high load conditions. Highly increased control efforts and excessive mechanical stress on the components are but a few examples of the drawbacks associated with HCCI. The approach employed in this work is the so-called Spark Assisted Compression Ignition (SACI) in combination with a pre-chamber spark plug, enabling short combustion durations even at high dilution levels.
Journal Article

A New Cavitation Algorithm to Support the Interpretation of LIF Measurements of Piston Rings

2020-04-14
2020-01-1091
Laser induced fluorescence (LIF) is used to investigate oil transport mechanisms under real engine conditions. The engine oil is mixed with a dye that can be induced by a laser. The emitted light intensity from the dye correlates with the residual oil at the sensor position and the resulting oil film thicknesses can be precisely determined for each crank angle. However, the general expectation is not always achieved, e.g. an exact representation of piston ring barrel shapes. In order to investigate the responsible lubrication effects of this behavior, a new cavitation algorithm for the Reynolds equation has been developed. The solution retains the mass conservation and does not use any switch function in its mathematical approach. In contrast to common approaches, no vapor-liquid ratio is used, but one or several bigger bubbles are approximated, as have been observed in other experiments already.
Journal Article

Fuel Consumption and Emission Reduction for Hybrid Electric Vehicles with Electrically Heated Catalyst

2020-06-30
2020-37-0017
Hybridization is a promising way to further reduce the CO2 emissions of passenger vehicles. However, high engine efficiencies and the reduction of engine load, due to torque assists by an electric motor, cause a decrease of exhaust gas temperature levels. This leads to an increased time to catalyst light-off, resulting in an overall lower efficiency of the exhaust aftertreatment system (ATS). Especially in low load driving conditions, at cold ambient temperatures and on short distance drives, the tailpipe pollutant emissions are severely impacted by these low ATS efficiency levels. To ensure lowest emissions under all driving conditions, catalyst heating methods must be used. In conventional vehicles, internal combustion engine measures (e.g. usage of a dedicated combustion mode for late combustion) can be applied. A hybrid system with an electrically heated catalyst (EHC) enables further methods such as the increase of engine load by the electric motor or electric catalyst heating.
Technical Paper

A Generalized Multiobjective Metamodel-Based Online Optimization Method for Engine Development

2023-05-15
2023-01-5027
Further advancing key technologies requires the optimization of increasingly complex systems with strongly interacting parameters—like efficiency optimization in engine development for optimizing the use of energy. Systematic optimization approaches based on metamodels, so-called Metamodel-Based Design Optimization (MBDO), present one key solution to these demanding problems. Recent advanced methods either focus on Single-Objective Optimization (SoO) on local metamodels with online adaptivity or Multiobjective Optimization (MoO) on global metamodels with only limited adaptivity. In the scope of this work, a fully online adaptive (“in the loop”) optimization approach, capable of both SoO and MoO, is developed which automatically approximates the global system response and determines the (Pareto) optimum.
Technical Paper

Neat Oxymethylene Ethers: Combustion Performance and Emissions of OME2, OME3, OME4 and OME5 in a Single-Cylinder Diesel Engine

2020-04-14
2020-01-0805
Diesel engines are arguably the superior device in the ground transportation sector in terms of efficiency and reliability, but suffer from inferior emission performance due to the diffusive nature of diesel combustion. Great research efforts gradually reduced nitrogen oxide (NOX) and particulate matter (PM) emissions, but the PM-NOX trade-off remained to be a problem of major concern and was believed to be inevitable for a long time. In the process of engine development, the modification of fuel properties has lately gained great attention. In particular, the oxygenate fuel oxymethylene ether (OME) has proven potential to not only drastically reduce emissions, but possibly resolve the formerly inevitable trade-off completely.
X