Refine Your Search

Topic

Author

Affiliation

Search Results

Training / Education

Automated Systems for Aerospace and Space Applications

Pressure on costs and budgets makes automating processes within the aerospace and space industries necessary. Misunderstandings about reductions to these complex systems can result in the improper application of these systems, often leading to poor outcomes and project failure. This course introduces the components of automation critical to the practice of acquiring, installing, and maintaining automation. The instructor presents the types, components, operation, application, cost benefits, laws, strengths, and limitations of automation.
Training / Education

Tire and Wheel Safety Issues

One of the most important safety critical components on cars, trucks, and aircraft is the pneumatic tire. Vehicle tires primarily control stopping distances on wet and dry roads or runways and strongly influence over-steer/under-steer behavior in handling maneuvers of cars and trucks. The inflated tire-wheel assembly also acts as a pressure vessel that releases a large amount of energy when catastrophically deflated. The tire can also serve as a fulcrum, both directly and indirectly, in contributing to vehicle rollover. This course covers these facets of tire safety phenomena.
Training / Education

The Tire as a Vehicle Component

The principal functions of the pneumatic tire are to generate driving, braking, and cornering forces while safely carrying the vehicle load and providing adequate levels of ride comfort. This course explains how tire forces and moments are generated under different operating and service conditions and, in turn, demonstrates how these forces and moments influence various vehicle responses such as braking, handling, ride, and high-speed performance. The content focuses on the fundamentals of tire behavior in automobiles, trucks, and farm tractors, but also includes experimental and empirical results, when necessary. 
Training / Education

Combustion and Emissions for Engineers

Public awareness regarding pollutants and their adverse health effects has created an urgent need for engineers to better understand the combustion process as well as the pollutants formed as by-products of that process. To effectively contribute to emission control strategies and design and develop emission control systems and components, a good understanding of the physical and mathematical principles of the combustion process is necessary. This course will bring issues related to combustion and emissions "down to earth," relying less on mathematical terms and more on physical explanations and analogies.
Training / Education

AS9145 Requirements for Advanced Product Quality Planning and Production Part Approval

2024-07-08
This course is verified by Probitas as meeting the AS9104/3A requirements for Continuing Professional Development. Production and continual improvement of safe and reliable products is key in the aviation, space, and defense industries. Customer and regulatory requirements must not only be met, but they are typically expected to exceeded requirements. Due to globalization, the supply chain of this industry has been expanded to countries which were not part of it in the past and has complicated the achievement of requirements compliance and customer satisfaction.
Training / Education

Tire Forensics and Markings

2024-06-24
This course introduces basic tire mechanics, including tire construction components based on application type, required sidewall stamping in accordance with DoT/ECE regulations, tread patterns, regulatory and research testing on quality, tire inspections and basic tire failure identification. The course will provide you with information that you can use immediately on-the-job and apply to your own vehicle. This course is practical in nature and supplemented with samples and hands-on activities.
Technical Paper

Design Analysis of High Power Density Additively Manufactured Induction Motor

2016-09-20
2016-01-2061
Induction machines (IM) are considered work horse for industrial applications due to their rugged, reliable and inexpensive nature; however, their low power density restricts their use in volume and weight limited environments such as an aerospace, traction and propulsion applications. Given recent advancements in additive manufacturing technologies, this paper presents opportunity to improve power density of induction machines by taking advantage of higher slot fill factor (SFF) (defined as ratio of bare copper area to slot area) is explored. Increase in SFF is achieved by deposition of copper in much more compact way than conventional manufacturing methods of winding in electrical machines. Thus a design tradeoff study for an induction motor with improved SFF is essential to identify and highlight the potentials of IM for high power density applications and is elaborated in this paper.
Video

General Motors Hybrid Systems and New e-Assist Powertrain

2011-11-18
Hybrid systems have been available for several years now, and offer customers a decrease in fuel consumption and CO2 emissions at an incremental price. Hybrids, in some cases, have offered improved other customer benefits such as reduced noise, vibration and harshness or better acceleration and the satisfaction of increased societal benefit. Sometimes the vehicle utility is compromised by the volume dedicated to energy storage systems. Several hybrid architecture arrangements exist in the market, and offer various levels of hybrid feature. But considering acquisition cost and operating expense, most hybrid vehicles have not offered a direct total cost advantage when compared to non-hybrids. GM's new e-Assist system is highly integrated with the engine and transmission functionality, and takes advantage of the highest value fuel economy enablers available with light electrification.
Video

Real-time Tire Imbalance Detection Using ABS Wheel Speed Sensors

2011-11-15
This presentation proposes an approach to use ABS wheel speed sensor signals together with other vehicle state information from a brake control module to detect an unbalanced tire or tires in real-time. The proposed approach consists of two-stage algorithms that mix a qualitative method using band-pass filtering with a quantitative parameter identification using conditional least squares. This two-stage approach can improve the robustness of tire imbalance or imbalances. The proposed approach is verified through vehicle testing and the test results show the effectiveness of the approach. Presenter Jianbo Lu, Ford Motor Co.
Video

Technical Keynote: State-of-Art of Moire Method and Applications to Shape, Displacement and Strain Measurement

2011-11-17
Virtual testing is a method that simulates lab testing using multi-body dynamic analysis software. The main advantages of this approach include that the design can be evaluated before a prototype is available and virtual testing results can be easily validated by subsequent physical testing. The disadvantage is that accurate specimen models are sometimes hard to obtain since nonlinear components such as tires, bushings, dampers, and engine mounts are hard to model. Therefore, virtual testing accuracy varies significantly. The typical virtual rigs include tire and spindle coupled test rigs for full vehicle tests and multi axis shaker tables for component tests. Hybrid simulation combines physical and virtual components, inputs and constraints to create a composite simulation system. Hybrid simulation enables the hard to model components to be tested in the lab.
Video

Real time Renewable Energy Availability for EV Charging

2012-03-29
Main topics are the development and the build-up of an 18ton hybrid truck with a parallel hybrid drivetrain. With this truck it is possible to drive up to 3 kilometers in the pure electric driving mode. Presenter Andreas Eglseer, Engineering Center Steyr GmbH & Co. KG
Video

Toyota's Comprehensive Environmental Technology: Providing Choices for Sustainable Mobility

2012-03-31
Toyota is committed to the development of advanced powertrains to help address concerns with future oil supplies, the impacts of increased carbon dioxide emissions, and air pollution. Towards that end Toyota is planning to bring to market in 2012 a plug-in hybrid vehicle, a short range electric vehicle, a long range electric vehicle and in the 2015 timeframe hydrogen powered fuel cell vehicle. This presentation will focus on our electric vehicle plans and the challenges with bringing electric vehicle to the market. From the 2010 Alt Fuels Study, Toyota has identified that two key barriers for EV adoption are the times to charge the vehicle, and electricity cost. The study finds that the current infrastructure could be sufficient for most driving needs but EV drivers will still need to alter their driving habits slightly.
Video

Estimating Return on Investment for SAVI (a Model-Based Virtual Integration Process)

2012-03-21
The System Architecture Virtual Integration (SAVI) program is a collaboration of industry, government, and academic organizations within the Aerospace Vehicle System Institute (AVSI) with the goal of structuring a new integration process that relies on a single-truth architectural framework. The SAVI approach of Integrate, then Build provides a modern distributed development environment which arrests the propagation of requirements errors through the development life cycle. It does so by capturing design assumptions and shared properties of the system design in an authoritative, annotated architectural model. This reference model provides a common, analyzable framework for confirming that system requirements remain complete, consistent, and correct at all levels of system decomposition. Core concepts of SAVI include extensive use of model-based system engineering tools and use of a single-truth reference architectural model.
Video

Evaluation of a NOx Transient Response Method for OBD of SCR Catalysts

2012-01-30
OBD requirements for aftertreatment system components require monitoring of the individual system components. One such component can be an NH3-SCR catalyst for NOx reduction. An OBD method that has been suggested is to generate positive or negative spikes in the inlet NH3 concentration, and monitor the outlet NOx transient response. A slow response indicates that the catalyst is maintaining its NH3 storage capacity, and therefore it is probably not degraded. A fast response indicates the catalyst has lost NH3 storage capacity, and may be degraded. The purpose of the work performed at Southwest Research Institute was to assess this approach for feasibility, effectiveness and practicality. The presentation will describe the work performed, results obtained, and implications for applying this method in test laboratory and real-world situations. Presenter Gordon J. Bartley, Southwest Research Institute
Video

A Methodology to Assess the Capabilities of a Cluster of Companies: The Case of "Torino Piemonte Aerospace"

2012-03-21
In any new aircraft development program there are many important design decisions that determine profitability potential. The key to making new aircraft profitable is to design features that will command more money than the cost to provide them within the market's ability to absorb them. The business model in this paper shows how to predict or find: 1) the costs to provide various aircraft features; 2) the values that aircraft buyers place on these features; 3) the amount of money that buyers have to commit to them, 4) the open spaces in the market in which to place new designs and 5) the predicted profits from new designs. In this process, this paper extends previous work on the law of value and demand, which states that attributes determine value; value determines price; and that price determines demand. This four-dimensional, non-negative system hosts a business model that describes the features needed to enable aircraft designs to go from concepts to profitable assembly lines.
Video

Using Programming and Simulation to Develop Optimized Processes for Automated Fiber Placement (AFP) CNC Machines

2012-03-21
Many manufacturing companies want to apply AFP technology to complex high-curvature part shapes. As new AFP machine technologies are developed to specifically apply material over complex shapes, new and innovative NC programming approaches are needed to successfully, reliably, and accurately apply material with good consolidation, while meeting the fiber direction and coverage requirements. A big issue with AFP is the production rate vs. part complexity. Most complex shapes can be created with a single .125? wide strip (tow) of material. But the production time would be impractically long. So machine builders create 6, 8, 16, even 32 tow AFP heads, and use the widest tow possible for the highest laydown rates. But then wide compaction rollers on these systems have difficulty consolidating material over curved surfaces, and the minimum steering radius of wider tows challenge the software?s ability to meet the layup requirements.
Video

Exploring the Manual Forming of Complex Geometry Composite Panels for Productivity and Quality Gains in Relation to Automated Forming Capabilities

2012-03-23
In a variety of industries there is a growing need to manufacture high quality carbon fibre epoxy matrix composite structures at greater production rates and lower costs than has historically been the case. This has developed into a desire for the automation of the manufacture of components, and in particular the lay-up phase, with Automated Tape Laying (ATL) and Fibre Placement (AFP) the most popular choices. When used for large primary structures there are such potential gains to be had that both techniques have seen rapid implementation into manufacturing environments. But significant concerns remain and these have limited their wider adoption into secondary structure manufacturing, where manual forming of woven broadgoods is dominant. As a result the manufacture of secondary structures is generally explored for costs reduction through drape simulation and lower cost materials.
X