Refine Your Search

Topic

Search Results

Viewing 1 to 18 of 18
Journal Article

Experimental and Numerical Study of Flame Kernel Formation Processes of Propane-Air Mixture in a Pressurized Combustion Vessel

2016-04-05
2016-01-0696
Fuel lean combustion and exhaust gas dilution are known to increase the thermal efficiency and reduce NOx emissions. In this study, experiments are performed to understand the effect of equivalence ratio on flame kernel formation and flame propagation around the spark plug for different low turbulent velocities. A series of experiments are carried out for propane-air mixtures to simulate engine-like conditions. For these experiments, equivalence ratios of 0.7 and 0.9 are tested with 20 percent mass-based exhaust gas recirculation (EGR). Turbulence is generated by a shrouded fan design in the vicinity of J-spark plug. A closed loop feedback control system is used for the fan to generate a consistent flow field. The flow profile is characterized by using Particle Image Velocimetry (PIV) technique. High-speed Schlieren visualization is used for the spark formation and flame propagation.
Technical Paper

Numerical Optimization of a SCR System Based on the Injection of Pure Gaseous Ammonia for the NOx Reduction in Light-Duty Diesel Engines

2020-04-14
2020-01-0356
Selective Catalytic Reduction (SCR) systems are nowadays widely applied for the reduction of NOx emitted from Diesel engines. The typical process is based on the injection of aqueous urea in the exhaust gases before the SCR catalyst, which determines the production of the ammonia needed for the catalytic reduction of NOx. However, this technology is affected by two main limitations: a) the evaporation of the urea water solution (UWS) requires a sufficiently high temperature of the exhaust gases and b) the formation of solid deposits during the UWS evaporation is a frequent phenomenon which compromise the correct operation of the system. In this context, to overcome these issues, a technology based on the injection of gaseous ammonia has been recently proposed: in this case, ammonia is stored at the solid state in a cartridge containing a Strontium Chloride salt and it is desorbed by means of electrical heating.
Journal Article

Full-Cycle CFD Modeling of Air/Fuel Mixing Process in an Optically Accessible GDI Engine

2013-09-08
2013-24-0024
This paper is focused on the development and application of a CFD methodology that can be applied to predict the fuel-air mixing process in stratified charge, sparkignition engines. The Eulerian-Lagrangian approach was used to model the spray evolution together with a liquid film model that properly takes into account its effects on the fuel-air mixing process into account. However, numerical simulation of stratified combustion in SI engines is a very challenging task for CFD modeling, due to the complex interaction of different physical phenomena involving turbulent, reacting and multiphase flows evolving inside a moving geometry. Hence, for a proper assessment of the different sub-models involved a detailed set of experimental optical data is required. To this end, a large experimental database was built by the authors.
Technical Paper

Modeling Ignition and Premixed Combustion Including Flame Stretch Effects

2017-03-28
2017-01-0553
Objective of this work is the incorporation of the flame stretch effects in an Eulerian-Lagrangian model for premixed SI combustion in order to describe ignition and flame propagation under highly inhomogeneous flow conditions. To this end, effects of energy transfer from electrical circuit and turbulent flame propagation were fully decoupled. The first ones are taken into account by Lagrangian particles whose main purpose is to generate an initial burned field in the computational domain. Turbulent flame development is instead considered only in the Eulerian gas phase for a better description of the local flow effects. To improve the model predictive capabilities, flame stretch effects were introduced in the turbulent combustion model by using formulations coming from the asymptotic theory and recently verified by means of DNS studies. Experiments carried out at Michigan Tech University in a pressurized, constant-volume vessel were used to validate the proposed approach.
Technical Paper

Combined Experimental and Numerical Investigation of the ECN Spray G under Different Engine-Like Conditions

2018-04-03
2018-01-0281
A detailed understanding of Gasoline Direct Injection (GDI) techniques applied to spark-ignition (SI) engines is necessary as they allow for many technical advantages such as increased power output, higher fuel efficiency and better cold start performances. Within this context, the extensive validation of multi-dimensional models against experimental data is a fundamental task in order to achieve an accurate reproduction of the physical phenomena characterizing the injected fuel spray. In this work, simulations of different Engine Combustion Network (ECN) Spray G conditions were performed with the Lib-ICE code, which is based on the open source OpenFOAM technology, by using a RANS Eulerian-Lagrangian approach to model the ambient gas-fuel spray interaction.
Technical Paper

Development of a CFD Approach to Model Fuel-Air Mixing in Gasoline Direct-Injection Engines

2012-04-16
2012-01-0146
Direct-injection represents a consolidated technology to increase performance and efficiency in spark-ignition engines. It reduces the knock tendency and makes engine downsizing possible through the use of turbocharging. Better control of CO and HC emissions at cold-start is also ensured since there is no wall-impingement in the intake port. However, to take advantages of all the theoretical benefits derived from GDI technology, detailed investigations of both fuel-air mixing and combustion processes are necessary to extend the stratified charge operations in the engine map and to reduce soot emissions, that are now severely regulated by emission standards. In this work, the authors developed a CFD methodology to investigate and optimize the fuel-air mixing process in direct-injection, spark-ignition engines. The Eulerian-Lagrangian approach is used to model the evolution of the fuel spray emerging from a multi-hole injector.
Journal Article

A Constant Equivalence Ratio Multi-Zone Approach for a Detailed and Fast Prediction of Performances and Emission in CI Engines

2022-03-29
2022-01-0381
The paper illustrates and validates a novel predictive combustion model for the estimation of performances and pollutant production in CI engines. The numerical methodology was developed by the authors for near real-time applications, while aiming at an accurate description of the air mixing process by means of a multi-zone approach of the air-fuel mass. Charge stratification is estimated via a 2D representation of the fuel spray distribution that is numerically derived by an axial one-dimensional control-volume description of the direct injection. The radial coordinate of each control volume is reconstructed a posteriori by means of a local distribution function. Fuel mass clustered in each zone is further split in ‘liquid’, ‘unburnt’ and ‘burnt’ sub-zones, given the local properties of the fuel spray control volumes with respect to space-time location of modelled ignition delay, liquid length, and flame lift-off.
Technical Paper

Extension and Validation of a Constant Equivalence Ratio Multi-Zone Approach to DME Combustion in Vessels and CI Engines

2023-04-11
2023-01-0193
This work has the objective to present the extension of a novel quasi-dimensional model, developed to simulate the combustion process in diesel Compression Ignition (CI) engines, to describe this process when Dimethyl ether (DME) is used as fuel. DME is a promising fuel in heavy-duty CI engines application thanks to its high Cetane Number (CN), volatility, high reactivity, almost smokeless combustion, lower CO2 emission and the possibility to be produced with renewable energy sources. In this paper, a brief description of the thermodynamic model will be presented, with particular attention to the implementation of the Tabulated Kinetic Ignition (TKI) model, and how the various models interact to simulate the combustion process. The model has been validated against experimental data derived from constant-volume DME combustion, in this case the most important parameters analyzed and compared were the Ignition Delay (ID) and Flame Lift Off Length (FLOL).
Technical Paper

Direct Evaluation of Turbine Isentropic Efficiency in Turbochargers: CFD Assisted Design of an Innovative Measuring Technique

2019-04-02
2019-01-0324
Turbocharging is playing today a fundamental role not only to improve automotive engine performance, but also to reduce fuel consumption and exhaust emissions for both Spark Ignition and Diesel engines. Dedicated experimental investigations on turbochargers are therefore necessary to assess a better understanding of its performance. The availability of experimental information on turbocharger steady flow performance is an essential requirement to optimize the engine-turbocharger matching, which is usually achieved by means of simulation models. This aspect is even more important when referred to the turbine efficiency, since its swallowing capacity can be accurately evaluated through the measurement of mass flow rate, inlet temperature and pressure ratio across the machine.
Technical Paper

Heat Transfer Analysis of Catalytic Converters during Cold Starts

2019-09-09
2019-24-0163
The transient heat transfer behavior of an automotive catalytic converter has been simulated with OpenFOAM in 1D. The model takes into consideration the gas-solid convective heat transfer, axial wall conduction and heat capacity effects in the solid phase, but also the chemical reactions of CO oxidation, based on simplified Arrhenius and Langmuir-Hinshelwood approaches. The associated parameters are the results of data in literature tuned by experiments. Simplified cases of constant flow rates and gas temperatures in the catalyst inflow have been chosen for a comprehensive analysis of the heat and mass transfer phenomena. The impact of inlet flow temperatures and inlet flow rates on the heat up characteristics as well as in the CO emissions have been quantified. A dimensional analysis is proposed and dimensionless temperature difference and space-time coordinates are introduced.
Technical Paper

CFD Modeling of Gas Exchange, Fuel-Air Mixing and Combustion in Gasoline Direct-Injection Engines

2019-09-09
2019-24-0095
Gasoline, direct injection engines represent one of the most widely adopted powertrain for passenger cars. However, further development efforts are necessary to meet the future fuel consumption and emission standards imposing an efficiency increase and a reduction of particulate matter emissions. Within this context, computational fluid dynamics is nowadays a consolidated tool to support engine design; this work is focused on the development of a set of CFD models for the prediction of combustion in modern GDI engines. The one-equation Weller model coupled with a zero-dimensional approach to handle initial flame kernel growth was applied to predict flame propagation. To account for mixture fraction fluctuations which might lead to the presence of soot precursor species, burned gas chemical composition is computed using tabulated kinetics with a presumed probability density function.
Technical Paper

CFD Modelling of Hydrogen-Fueled SI Engines for Light-Duty Applications

2023-08-28
2023-24-0017
The employment of hydrogen as energy carrier for transportation sector represents a significant challenge for powertrains. Spark-ignition (SI) engines are feasible and low-cost devices to convert the hydrogen chemical energy into mechanical work. However, significant efforts are needed to successfully retrofit the available configurations. The computational fluid dynamics (CFD) modelling represents a useful tool to support experiments, clarifying the impact of the engine characteristics on both the mixture preparation and the combustion development. In this work, a CFD investigation is carried out on typical light-duty SI engine configurations, exploring the two main strategies of hydrogen addition: port fuel injection (PFI) and direct injection (DI). The purpose is to assess the behaviour of widely-used numerical models and methodologies when hydrogen is employed instead of traditional carbon-based fuels.
Technical Paper

Numerical and Experimental Investigation on Passive Prechamber Configurations Able to Operate at Low Engine Speed and Load

2023-08-28
2023-24-0031
Turbulent Jet Ignition (TJI) represents one of the most effective solution to improve engine efficiency and to reduce fuel consumption and pollutants emission. Even if active prechambers allow a precise control of the air-fuel ratio close to the spark plug and the ignition of ultra-lean mixtures in the main chamber, passive prechambers represent a more attractive solution especially for passenger cars thanks to their simpler and cheaper configuration, which is easier to integrate into existing engines. The main challenge of passive prechambers is to find a geometry that allows to use TJI in the whole engine map, especially in the low load/speed region, without the use of a second sparkplug in the main chamber. To this end, this works reports a CFD study coupled with an experimental investigation to overcome this limitation.
Technical Paper

A Fast and Reliable CFD Approach to Design Hydrogen SI Engines for Industrial Applications

2023-06-26
2023-01-1208
SI engines fueled with hydrogen represent a promising powertrain solution to meet the ambitious target of carbon-free emissions at the tailpipe. Therefore, fast and reliable numerical tools can significantly support the automotive industry in the optimization of such technology. In this work, a 1D-3D methodology is presented to simulate in detail the combustion process with minimal computational effort. First, a 1D analysis of the complete engine cycle is carried out on the user-defined powertrain configuration. The purpose is to achieve reliable boundary conditions for the combustion chamber, based on realistic engine parameters. Then, a 3D simulation of the power-cycle is performed to mimic the combustion process. The flow velocity and turbulence distributions are initialized without the need of simulating the gas exchange process, according to a validated technique.
Technical Paper

1D Modeling of a High-Performance Engine Fueled with H2 And Equipped with A Low NOx Aftertreatment Device

2024-06-12
2024-37-0009
Hydrogen engines are currently considered as a viable solution to preserve the internal combustion engine as a power unit for vehicle propulsion. In particular, lean-burn gasoline Spark-Ignition (SI) engines have been a major subject of investigations due to the reduced emission levels and high thermodynamic efficiency. This strategy is suitable for the purpose of passenger car applications and cannot be tailored in the field of high performance engine, where the air mass delivered would require oversized turbocharging systems or more complex charging solutions. For this reason, the range of stoichiometric feeding condition is explored in the high performance engine, leading to the consequent issue of abatement of pollutant emissions. In this work a 1D model will be applied to the modeling of a V8 engine fueled with DI of hydrogen. The engine has been derived by a gasoline configuration and adapted to hydrogen in such a way to keep the same performance.
Technical Paper

CFD Modeling of Conventional and Pre-Chamber Ignition of a High-Performance Naturally Aspirated Engine

2024-04-09
2024-01-2102
The abatement of carbon dioxide and pollutant emissions on motorbike spark-ignition (SI) engines is a challenging task, considering the small size, the low cost and the high power-to-weight ratio required by the market for such powertrain. In this context, the passive pre-chamber (PPC) technology is an attractive solution. The combustion duration can be reduced by igniting the air-fuel mixture inside a small volume connected to the cylinder, unfolding the way to high engine efficiencies without penalization of the peak performance. Moreover, no injectors are needed inside the PPC, guaranteeing a cheap and fast retrofitting of the existing fleet. In this work, a 3D computational fluid dynamics (CFD) investigation is carried out over an experimental configuration of motorbike SI engine, operated at fixed operating conditions with both traditional and PPC configurations.
Journal Article

CFD Assessment of an After-Treatment System Equipped with Electrical Heating for the Reduction of the Catalyst Light-Off Time

2023-04-11
2023-01-0366
The reduction of the catalyst light-off time at the engine cold start represents a key factor for the pollutant emissions control from vehicles tested on homologation cycles and real drive conditions. The adoption of heating strategies to increase the temperature of the catalytic substrate in the early phase of the engine start is regarded as a promising solution. The present study focuses on the application of electrical heated catalyst (EHC) in an after-treatment line for a spark-ignition gasoline engine. The analysis is carried out by means of an advanced CFD framework, which includes the modeling of catalytic reactions in the substrates and accounts for the thermal evolution of all the components included in the after-treatment system.
Technical Paper

Full-Scale CFD Prediction of the Performance of Advanced After-Treatment Systems during Severe RDE Test Cycle

2024-04-09
2024-01-2624
Air pollution is a significant environmental issue, and exhaust emissions from internal combustion engines are one of the primary sources of harmful pollutants. The transportation sector, which includes road vehicles, contributes to a large share of these emissions. In Europe, the latest emission legislation (Euro 7) proposes more stringent limits and testing conditions for vehicle emissions. To meet these limits, the automotive industry is actively developing innovative exhaust emission-control technologies. With the growing prevalence of electrification, internal combustion engines are subject to continuous variations in load and engine speed, including phases where the engine is switched off. The result is an operating condition characterized by successive cold starts. In this context, the challenge in coping with the emission limits is to minimize the light-off time and prevent fast light-out conditions during idling or city driving.
X