Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

The Visualization of Soot Late in the Diesel Combustion Process by Laser Induced Incandescence with a Vertical Laser Sheet

2015-04-14
2015-01-0801
Although soot-formation processes in diesel engines have been well characterized during the mixing-controlled burn, little is known about the distribution of soot throughout the combustion chamber after the end of appreciable heat release during the expansion and exhaust strokes. Hence, the laser-induced incandescence (LII) diagnostic was developed to visualize the distribution of soot within an optically accessible single-cylinder direct-injection diesel engine during this period. The developed LII diagnostic is semi-quantitative; i.e., if certain conditions (listed in the Appendix) are true, it accurately captures spatial and temporal trends in the in-cylinder soot field. The diagnostic features a vertically oriented and vertically propagating laser sheet that can be translated across the combustion chamber, where “vertical” refers to a direction parallel to the axis of the cylinder bore.
Technical Paper

Probing Spark Discharge Behavior in High-speed Cross-flows through Modeling and Experimentation

2020-04-14
2020-01-1120
This paper presents a combined numerical and experimental investigation of the characteristics of spark discharge in a spark-ignition engine. The main objective of this work is to gain insights into the spark discharge process and early flame kernel development. Experiments were conducted in an inert medium within an optically accessible constant-volume combustion vessel. The cross-flow motion in the vessel was generated using a previously developed shrouded fan. Numerical modeling was based on an existing discharge model in the literature developed by Kim and Anderson. However, this model is applicable to a limited range of gas pressures and flow fields. Therefore, the original model was evaluated and improved to predict the behavior of spark discharge at pressurized conditions up to 45 bar and high-speed cross-flows up to 32 m/s. To accomplish this goal, a parametric study on the spark channel resistance was conducted.
Journal Article

Modeling of Phase Change within a Wax Element Thermostat Embedded in an Automotive Cooling System

2017-03-28
2017-01-0131
In an automotive cooling circuit, the wax melting process determines the net and time history of the energy transfer between the engine and its environment. A numerical process that gives insight into the mixing process outside the wax chamber, the wax melting process inside the wax chamber, and the effect on the poppet valve displacement will be advantageous to both the engine and automotive system design. A fully three dimensional, transient, system level simulation of an inlet controlled thermostat inside an automotive cooling circuit is undertaken in this paper. A proprietary CFD algorithm, Simerics-Sys®/PumpLinx®, is used to solve this complex problem. A two-phase model is developed in PumpLinx® to simulate the wax melting process. The hysteresis effect of the wax melting process is also considered in the simulation.
Journal Article

Calibration and Demonstration of Vehicle Powertrain Thermal Management Using Model Predictive Control

2017-03-28
2017-01-0130
Control of vehicle powertrain thermal management systems is becoming more challenging as the number of components is growing, and as a result, advanced control methods are being investigated. Model predictive control (MPC) is particularly interesting in this application because it provides a suitable framework to manage actuator and temperature constraints, and can potentially leverage preview information if available in the future. In previous SAE publications (2015-01-0336 and 2016-01-0215), a robust MPC control formulation was proposed, and both simulation and powertrain thermal lab test results were provided. In this work, we discuss the controller deployment in a vehicle; where controller validation is done through road driving and on a wind tunnel chassis dynamometer. This paper discusses challenges of linear MPC implementation related to nonlinearities in this over-actuated thermal system.
Journal Article

Dynamic Misfire Threshold Determination Based On Zone-Level and Buffer-Level Adaptations for Internal Combustion Engines

2017-03-28
2017-01-0599
Misfire is generally defined as be no or partial combustion during the power stroke of internal combustion engine. Because a misfired engine will dramatically increase the exhaust emission and potentially cause permanent damage to the catalytic converters, California Air Resources Board (CARB), as well as most of other countries’ on-board diagnostic regulations mandates the detection of misfire. Currently almost all the OEMs utilize crankshaft position sensors as the main input to their misfire detection algorithm. The detailed detection approaches vary among different manufacturers. For example, some chooses the crankshaft angular velocity calculated from the raw output of the crankshaft positon sensor as the measurement to distinguish misfires from normal firing events, while others use crankshaft angular acceleration or the associated torque index derived from the crankshaft position sensor readings as the measurement of misfire detection.
Journal Article

Development and Optimization of the Ford 3.5L V6 EcoBoost Combustion System

2009-04-20
2009-01-1494
Recently, Ford Motor Company announced the introduction of EcoBoost engines in its Ford, Lincoln and Mercury vehicles as an affordable fuel-saving option to millions of its customers. The EcoBoost engine is planned to start production in June of 2009 in the Lincoln MKS. The EcoBoost engine integrates direct fuel injection with turbocharging to significantly improve fuel economy via engine downsizing. An application of this technology bundle into a 3.5L V6 engine delivers up to 12% better drive cycle fuel economy and 15% lower emissions with comparable torque and power as a 5.4L V8 PFI engine. Combustion system performance is key to the success of the EcoBoost engine. A systematic methodology has been employed to develop the EcoBoost engine combustion system.
Journal Article

Ionization Signal Response during Combustion Knock and Comparison to Cylinder Pressure for SI Engines

2008-04-14
2008-01-0981
In-cylinder ion sensing is a subject of interest due to its application in spark-ignited (SI) engines for feedback control and diagnostics including: combustion knock detection, rate and phasing of combustion, and mis-fire On Board Diagnostics (OBD). Further advancement and application is likely to continue as the result of the availability of ignition coils with integrated ion sensing circuitry making ion sensing more versatile and cost effective. In SI engines, combustion knock is controlled through closed loop feedback from sensor metrics to maintain knock near the borderline, below engine damage and NVH thresholds. Combustion knock is one of the critical applications for ion sensing in SI engines and improvement in knock detection offers the potential for increased thermal efficiency. This work analyzes and characterizes the ionization signal in reference to the cylinder pressure signal under knocking and non-knocking conditions.
Journal Article

Residual Stress Analysis of Air-Quenched Engine Aluminum Cylinder Heads

2008-04-14
2008-01-1420
Residual stress of an air quenched engine cylinder head is studied in the present paper. The numerical simulation is accomplished by sequential thermal and stress analyses. Thermal history of the cylinder head is simulated by using the commercial Computation Fluid Mechanics (CFD) code FLUENT. The only parameter adjustable in the analysis is the incoming air speed. Predicted temperatures at two locations are comparable with available thermocouple data. Stress analysis is performed using ABAQUS with a Ford proprietary material constitutive relation, which is based on coupon tests on the as-solution treated material. Both temperature and strain rate impacts on material behavior of the as-solution treated material are considered in the stress and strain model. Predicted residual strain is shown to be consistent with measured data, which is obtained by using strain gauging and sectioning method.
Journal Article

Early Direct-Injection, Low-Temperature Combustion of Diesel Fuel in an Optical Engine Utilizing a 15-Hole, Dual-Row, Narrow-Included-Angle Nozzle

2008-10-06
2008-01-2400
Low-temperature combustion of diesel fuel was studied in a heavy-duty, single-cylinder, optical engine employing a 15-hole, dual-row, narrow-included-angle nozzle (10 holes × 70° and 5 holes × 35°) with 103-μm-diameter orifices. This nozzle configuration provided the spray targeting necessary to contain the direct-injected diesel fuel within the piston bowl for injection timings as early as 70° before top dead center. Spray-visualization movies, acquired using a high-speed camera, show that impingement of liquid fuel on the piston surface can result when the in-cylinder temperature and density at the time of injection are sufficiently low. Seven single- and two-parameter sweeps around a 4.82-bar gross indicated mean effective pressure load point were performed to map the sensitivity of the combustion and emissions to variations in injection timing, injection pressure, equivalence ratio, simulated exhaust-gas recirculation, intake temperature, intake boost pressure, and load.
Journal Article

Hydrocarbons and Particulate Matter in EGR Cooler Deposits: Effects of Gas Flow Rate, Coolant Temperature, and Oxidation Catalyst

2008-10-06
2008-01-2467
Compact heat exchangers are commonly used in diesel engines to reduce the temperature of recirculated exhaust gases, resulting in decreased NOx emissions. These exhaust gas recirculation (EGR) coolers experience fouling through deposition of particulate matter (PM) and hydrocarbons (HCs) that reduces the effectiveness of the cooler. Surrogate tubes have been used to investigate the impacts of gas flow rate and coolant temperature on the deposition of PM and HCs. The results indicate that mass deposition is lowest at high flow rates and high coolant temperatures. An oxidation catalyst was investigated and proved to effectively reduce deposition of HCs, but did not reduce overall mass deposition to near-zero levels. Speciation of the deposit HCs showed that a range of HCs from C15 - C25 were deposited and retained in the surrogate tubes.
Journal Article

Signal Processing Parameters for Estimation of the Diesel Engine Combustion Signature

2011-05-17
2011-01-1649
Research into the estimation of diesel engine combustion metrics via non-intrusive means, typically referred to as “remote combustion sensing” has become an increasingly active area of combustion research. Success in accurately estimating combustion metrics with low-cost non-intrusive transducers has been proven and documented by multiple sources on small scale diesel engines (2-4 cylinders, maximum outputs of 67 Kw, 210 N-m). This paper investigates the application of remote combustion sensing technology to a larger displacement inline 6-cylinder diesel with substantially higher power output (280 kW, 1645 N-m) than previously explored. An in-depth frequency analysis has been performed with the goal of optimizing the estimated combustion signature which has been computed based upon the direct relationship between the combustion event measured via a pressure transducer, and block vibration measured via accelerometers.
Journal Article

Study of Basic Injection Configurations using a Direct-Injection Hydrogen Research Engine

2009-04-20
2009-01-1418
The application of hydrogen (H2) as an internal combustion (IC) engine fuel has been under investigation for several decades. The favorable physical properties of hydrogen make it an excellent alternative fuel for fuel cells as well as IC engines and hence it is widely regarded as the energy carrier of the future. The potential of hydrogen as an IC engine fuel can be optimized by direct injection (DI) as it provides multiple degrees of freedom to influence the in-cylinder combustion processes and consequently the engine efficiency and exhaust emissions. This paper studies a single-hole nozzle and examines the effects of injection strategy on engine efficiency, combustion behavior and NOx emissions. The experiments for this study are done on a 0.5 liter single-cylinder research engine which is specifically designed for combustion studies and equipped with a cylinder head that allows side as well as central injector location.
Technical Paper

THE EFFECT OF BIODIESEL ON THE ELECTRICAL PROPERTIES OF AUTOMOTIVE ELASTOMERIC COMPOUNDS

2020-01-13
2019-36-0327
The lack of electrical conductivity on materials, which are used in automotive fuel systems, can lead to electrostatic charges buildup in the components of such systems. This accumulation of energy can reach levels that exceed their capacity to withstand voltage surges, which considerably increases the risk of electrical discharges or sparks. Another important factor to consider is the conductivity of the commercially available fuels, such as biodiesel, which contributes to dissipate these charges to a proper grounding point in automobiles. From 2013, the diesel regulation in Brazil have changed and the levels of sulfur in the composition of diesel were reduced considerably, changing its natural characteristic of promoting electrostatic discharges, becoming more insulating.
Technical Paper

Novel CFD Techniques For In-Cylinder Flows On Tetrahedral Grids

1998-02-01
980138
An innovative approach for computing in-cylinder flowfields on tetrahedral grids is developed and demonstrated. The primary focus of the preliminary work presented in this paper is the development of an efficient mesh motion scheme for realistic engine geometries. An automated cell layering technique has been devised which embeds/deletes layers of tetrahedral cells as the cylinder flow domain expands/shrinks. The ability to compute in-cylinder flows using this new “multi-zone” concept is demonstrated for a twin-valve gasoline engine.
Technical Paper

Using Engine as Torsional Shaker for Vehicle Sensitivity Refinement at Idle Conditions

2007-05-15
2007-01-2319
Vehicle idle quality has become an increasing quality concern for automobile manufacturers because of its impact on customer satisfaction. There are two factors that critical to vehicle idle quality, the engine excitation force and vehicle sensitivity (transfer function). To better understand the contribution to the idle quality from these two factors and carry out well-planned improvement measures, a quick and easy way to measure vehicle sensitivity at idle conditions is desired. There are several different ways to get vehicle sensitivity at idle conditions. A typical way is to use CAE. One of the biggest advantages using CAE is that it can separate vehicle sensitivities to different forcing inputs. As always, the CAE results need to be validated before being fully utilized. Another way to get vehicle sensitivity is through impact test using impact hammer or shaker. However this method doesn't include the mount preload due to engine firing torque [3, 4, & 5].
Technical Paper

The Volume Acoustic Modes of Spark-Ignited Internal Combustion Chambers

1998-02-23
980893
Acoustic standing waves are excited in internal combustion chambers by both normal combustion and autoignition. The energy in these acoustic modes can be transmitted through the engine block and radiated as high-frequency engine noise. Using finite-element models of two different (four-valve and two-valve) production engine combustion chambers, the mode shapes and relative frequencies of the in-cylinder volume acoustic modes are calculated as a function of crank angle. The model is validated by comparison to spectrograms of experimental time-sampled waveforms (from flush-mounted cylinder pressure sensors and accelerometers) from these two typical production spark-ignited engines.
Technical Paper

An Efficient IC Engine Conjugate Heat Transfer Calculation for Cooling System Design

2007-04-16
2007-01-0147
This study focuses on how to predict hot spots of one of the cylinders of a V8 5.4 L FORD engine running at full load. The KIVA code with conjugate heat transfer capability to simulate the fast transient heat transfer process between the gas and the solid phases has been developed at the Michigan Technological University and will be used in this study. Liquid coolant flow was simulated using FLUENT and will be used as a boundary condition to account for the heat loss to the cooling fluid. In the first step of calculation, the coupling between the gas and the solid phases will be solved using the KIVA code. A 3D transient wall heat flux at the gas-solid interface is then compiled and used along with the heat loss information from the FLUENT data to obtain the temperature distribution for the engine metal components, such as cylinder wall, cylinder head, etc.
Technical Paper

Accelerometer Based Sensing of Combustion in a High Speed HPCR Diesel Engine

2007-04-16
2007-01-0972
The capability to detect combustion in a diesel engine has the potential of being an important control feature to meet increasingly stringent emission regulations and for the development of alternative combustion strategies such as HCCI and PCCI. In this work, block mounted accelerometers are investigated as potential feedback sensors for detecting combustion characteristics in a high-speed, high pressure common rail (HPCR), 1.9L diesel engine. Accelerometers are positioned in multiple placements and orientations on the engine, and engine testing is conducted under motored, single and pilot-main injection conditions. Engine tests are then conducted at varying injection timings to observe the resulting time and frequency domain changes of both the pressure and acceleration signals.
Technical Paper

Environmentally Friendly and Low Cost Manufacturing – Implementation of MQL Machining (Minimum Quantity Lubrication)

2007-04-16
2007-01-1338
Near Dry or Minimum Quantity Lubrication (MQL) Machining eliminates conventional flood coolant from the machining processes. In doing so, MQL reduces oil mist generation, biological contamination of coolant, waste water volume, costs for capital equipment and regulatory permitting. MQL also improves recycling and transport of coolant contaminated chips [1]. Although MQL machining technology has several advantages compared to wet machining, widespread implementation will require a paradigm shift among end-users, machine suppliers, and cutting tool suppliers. Successful implementation of MQL machining requires a high technical understanding and a solid infrastructure to support maintenance and on-going continuous improvement [2].
Technical Paper

Active Fuel Management™ Technology: Hardware Development on a 2007 GM 3.9L V-6 OHV SI Engine

2007-04-16
2007-01-1292
In the North American automotive market, cylinder deactivation by means of engine valve deactivation is becoming a significant enabler in reducing the Brake Specific Fuel Consumption (BSFC) of large displacement engines. This allows for the continued market competitiveness of large displacement spark ignition (SI) engines that provide exceptional performance with reduced fuel consumption. As an alternative to a major engine redesign, the Active Fuel Management™ (AFM™) system is a lower cost and effective technology that provides improved fuel economy during part-load conditions. Cylinder deactivation is made possible by utilizing innovative new base engine hardware in conjunction with an advanced control system. In the GM 3.9L V-6 Over Head Valve (OHV) engine, the standard hydraulic roller lifters on the engine's right bank are replaced with deactivating hydraulic roller lifters and a manifold assembly of oil control solenoids.
X