Refine Your Search

Topic

Author

Search Results

Journal Article

Eulerian CFD Modeling of Coupled Nozzle Flow and Spray with Validation Against X-Ray Radiography Data

2014-04-01
2014-01-1425
This paper implements a coupled approach to integrate the internal nozzle flow and the ensuing fuel spray using a Volume-of-Fluid (VOF) method in the CONVERGE CFD software. A VOF method was used to model the internal nozzle two-phase flow with a cavitation description closed by the homogeneous relaxation model of Bilicki and Kestin [1]. An Eulerian single velocity field approach by Vallet et al. [2] was implemented for near-nozzle spray modeling. This Eulerian approach considers the liquid and gas phases as a complex mixture with a highly variable density to describe near nozzle dense sprays. The mean density is obtained from the Favreaveraged liquid mass fraction. The liquid mass fraction is transported with a model for the turbulent liquid diffusion flux into the gas.
Technical Paper

Effect of Battery Temperature on Fuel Economy and Battery Aging When Using the Equivalent Consumption Minimization Strategy for Hybrid Electric Vehicles

2020-04-14
2020-01-1188
Battery temperature variations have a strong effect on both battery aging and battery performance. Significant temperature variations will lead to different battery behaviors. This influences the performance of the Hybrid Electric Vehicle (HEV) energy management strategies. This paper investigates how variations in battery temperature will affect Lithium-ion battery aging and fuel economy of a HEV. The investigated energy management strategy used in this paper is the Equivalent Consumption Minimization Strategy (ECMS) which is a well-known energy management strategy for HEVs. The studied vehicle is a Honda Civic Hybrid and the studied battery, a BLS LiFePO4 3.2Volts 100Ah Electric Vehicle battery cell. Vehicle simulations were done with a validated vehicle model using multiple combinations of highway and city drive cycles. The battery temperature variation is studied with regards to outside air temperature.
Journal Article

An Experimental and Numerical Study of Diesel Spray Impingement on a Flat Plate

2017-03-28
2017-01-0854
Combustion systems with advanced injection strategies have been extensively studied, but there still exists a significant fundamental knowledge gap on fuel spray interactions with the piston surface and chamber walls. This paper is meant to provide detailed data on spray-wall impingement physics and support the spray-wall model development. The experimental work of spray-wall impingement with non-vaporizing spray characterization, was carried out in a high pressure-temperature constant-volume combustion vessel. The simultaneous Mie scattering of liquid spray and schlieren of liquid and vapor spray were carried out. Diesel fuel was injected at a pressure of 1500 bar into ambient gas at a density of 22.8 kg/m3 with isothermal conditions (fuel, ambient, and plate temperatures of 423 K). A Lagrangian-Eulerian modeling approach was employed to characterize the spray-gas and spray-wall interactions in the CONVERGETM framework by means of a Reynolds-Averaged Navier-Stokes (RANS) formulation.
Journal Article

Effect of Off-Axis Needle Motion on Internal Nozzle and Near Exit Flow in a Multi-Hole Diesel Injector

2014-04-01
2014-01-1426
The internal structure of Diesel fuel injectors is known to have a significant impact on the nozzle flow and the resulting spray emerging from each hole. In this paper the three-dimensional transient flow structures inside a Diesel injector is studied under nominal (in-axis) and realistic (including off-axis lateral motion) operating conditions of the needle. Numerical simulations are performed in the commercial CFD code CONVERGE, using a two-phase flow representation based on a mixture model with Volume of Fluid (VOF) method. Moving boundaries are easily handled in the code, which uses a cut-cell Cartesian method for grid generation at run time. First, a grid sensitivity study has been performed and mesh requirements are discussed. Then the results of moving needle calculations are discussed. Realistic radial perturbations (wobbles) of the needle motion have been applied to analyze their impact on the nozzle flow characteristics.
Technical Paper

Enhancement of Engineering Education through University Competition-Based Events

2006-11-13
2006-32-0049
Engineering education at the University level is enhanced by competition-based projects. The SAE Clean Snowmobile Challenge is a prime example of how competition-based engineering education benefits the small engines industry and improves the engineering talent pool of the nation in general. For the past several decades, SAE has encouraged young engineers to compete in designing off road vehicles (Baja SAE ®), small race cars (Formula SAE ®), remote control airplanes (Aero Design ®), high mileage vehicles (Supermileage ®) and robots (Walking Robot ®). Now a new competition, the SAE Clean Snowmobile Challenge ™ (CSC), based on designing a cleaner and quieter snowmobile has led to a new path for young engineers to explore the challenges of designing engines that emit less pollution and noise. The paper will summarize the results of the most recent Clean Snowmobile Challenge 2006 and document the successes of the past seven years of the Challenge.
Technical Paper

Development of a 1-D CPF Model to Simulate Active Regeneration of a Diesel Particulate Filter

2009-04-20
2009-01-1283
A quasi-steady 1-dimensional computer model of a catalyzed particulate filter (CPF) capable of simulating active regeneration of the CPF via diesel fuel injection upstream of a diesel oxidation catalyst (DOC) or other means to increase the exhaust gas temperature has been developed. This model is capable of predicting gaseous species concentrations (HC's, CO, NO and NO2) and exhaust gas temperatures within and after the CPF, for given input values of gaseous species and PM concentrations before the CPF and other inlet variables such as time-varying temperature of the exhaust gas at the inlet of the CPF and volumetric flow rate of exhaust gas.
Technical Paper

Wood-to-Wheels: A Multidisciplinary Research Initiative in Sustainable Transportation Utilizing Fuels and Co-Products from Forest Resources

2008-10-20
2008-21-0026
Michigan Technological University has established a broad-based university-wide research initiative, termed Wood-to-Wheels (W2W), to develop and evaluate improved technologies for growing, harvesting, converting, and using woody biomass in renewable transportation fuel applications. The W2W program bridges the entire biomass development-production-consumption life cycle with research in areas including forest resources, bioprocessing, engine/vehicle systems, and sustainable decisions. The W2W chain establishes a closed cycle of carbon between the atmosphere, woody biomass, fuels, and vehicular systems that can reduce the accumulation of CO2 in the atmosphere. This paper will summarize the activities associated with the Wood-to-Wheels initiative and describe challenges and the potential benefits that are achievable.
Technical Paper

Powersplit Hybrid Electric Vehicle Control with Electronic Throttle Control (ETC)

2003-10-27
2003-01-3280
This paper analyzes the control of the series-parallel powersplit used in the 2001 Michigan Tech FutureTruck. An electronic throttle controller is implemented and a new control algorithm is proposed and tested. A vehicle simulation has been created in MATLAB and the control algorithm implemented within the simulation. A program written in C has also been created that implements the control algorithm in the test vehicle. The results from both the simulation and test vehicle are presented and discussed and show a 15% increase in fuel economy. With the increase in fuel economy, and through the use of the original exhaust after treatment, lower emissions are also expected.
Technical Paper

Control Strategies for a Series-Parallel Hybrid Electric Vehicle

2001-03-05
2001-01-1354
Living in the era of rising environmental sensibility and increasing gasoline prices, the development of a new environmentally friendly generation of vehicles becomes a necessity. Hybrid electric vehicles are one means of increasing propulsion system efficiency and decreasing pollutant emissions. In this paper, the series-parallel power-split configuration for Michigan Technological University's FutureTruck is analyzed. Mathematical equations that describe the hybrid power-split transmission are derived. The vehicle's differential equations of motion are developed and the system's need for a controller is shown. The engine's brake power and brake specific fuel consumption, as a function of its speed and throttle position, are experimentally determined. A control strategy is proposed to achieve fuel efficient engine operation. The developed control strategy has been implemented in a vehicle simulation and in the test vehicle.
Technical Paper

Modeling of Human Response From Vehicle Performance Characteristics Using Artificial Neural Networks

2002-05-07
2002-01-1570
This study investigates a methodology in which the general public's subjective interpretation of vehicle handling and performance can be predicted. Several vehicle handling measurements were acquired, and associated metrics calculated, in a controlled setting. Human evaluators were then asked to drive and evaluate each vehicle in a winter driving school setting. Using the acquired data, multiple linear regression and artificial neural network (ANN) techniques were used to create and refine mathematical models of human subjective responses. It is shown that artificial neural networks, which have been trained with the sets of objective and subjective data, are both more accurate and more robust than multiple linear regression models created from the same data.
Technical Paper

Application of High Performance Computing for Simulating Cycle-to-Cycle Variation in Dual-Fuel Combustion Engines

2016-04-05
2016-01-0798
Interest in operational cost reduction is driving engine manufacturers to consider low-cost fuel substitution in heavy-duty diesel engines. These dual-fuel (DF) engines could be operated either in diesel-only mode or operated with premixed natural gas (NG) ignited by a pilot flame of compression-ignited direct-injected diesel fuel. Under certain conditions, dual-fuel operation can result in increased cycle-to-cycle variability (CCV) during combustion. CFD can greatly help in understanding and identifying critical parameters influencing CCV. Innovative modelling techniques and large computing resources are needed to investigate the factors affecting CCV in dual-fuel engines. This paper discusses the use of the High Performance Computing resource Titan, at Oak Ridge National Laboratory, to investigate CCV of a dual-fuel engine.
Technical Paper

Spark Ignited Direct Injection Natural Gas Combustion in a Heavy Duty Single Cylinder Test Engine - Nozzle Included Angle Effects

2017-03-28
2017-01-0781
The increased availability of natural gas (NG) in the United States (US) and its relatively low cost versus diesel fuel has increased interest in the conversion of medium duty (MD) and heavy duty (HD) engines to NG fueled combustion systems. The aim for development for these NG engines is to realize fuel cost savings and increase operating range while reduce harmful emissions and maintaining durability. Traditionally, port-fuel injection (PFI) or premixed NG spark-ignited (SI) combustion systems have been used for light duty LD, and MD engines with widespread use in the US and Europe [1]. However, this technology exhibits poor thermal efficiency and is load limited due to knock phenomenon that has prohibited its use for HD engines. Spark Ignited Direct Injection (SIDI) can be used to create a partially stratified combustion (PSC) mixture of NG and air during the compression stroke.
Technical Paper

Development of a Transient Spray Cone Angle Correlation for CFD Simulations at Diesel Engine Conditions

2018-04-03
2018-01-0304
The accurate modeling of fuel spray behavior under diesel engine conditions requires well-characterized boundary conditions. Among those conditions, the spray cone angle is important due to its impact on the spray mixing process, flame lift-off locations and subsequent soot formation. The spray cone angle is a highly dynamic variable, but existing correlations have been developed mainly for diesel fuels at quasi-steady state and relatively low injection pressures. The objective of this study was to develop spray cone angle correlations for both diesel and a light-end gasoline fuel over a wide range of diesel-engine operating conditions that are capable of capturing both the transient and quasi-steady state processes. Two important macroscopic characteristics of solid cone sprays, the spray cone angle and spray penetration, were measured using a single-hole heavy-duty injector using two fuels at diesel engine conditions in an optical constant volume vessel.
Technical Paper

Hydrotreated Vegetable Oil and Miller Timing in a Medium-Speed CI Engine

2012-04-16
2012-01-0862
The objective of this paper is to analyse the performance and the combustion of a large-bore single-cylinder medium speed engine running with hydrotreated vegetable oil. This fuel has a paraffinic chemical structure and high Cetane number. These features enable achievement of complete and clean combustion with different engine setups. The main benefits are thus lower soot and nitrogen oxides emissions compared to diesel fuel. The facility used in this study is a research engine, where the conditions upstream the machine, the valve timing and the injection parameters are fully adjustable. In fact, the boundary conditions upstream and downstream the engine are freely controlled by a separated supply air plant and by a throttle valve, located at the end of the exhaust pipe. The injection system is common-rail: rail pressure, injection timing and duration are completely adjustable.
Technical Paper

Correlations of Non-Vaporizing Spray Penetration for 3000 Bar Diesel Spray Injection

2013-09-08
2013-24-0033
Increasing fuel injection pressure has enabled reduction of diesel emissions while retaining the advantage of the high thermal efficiency of diesel engines. With production diesel injectors operating in the range from 300 to 2400 bar, there is interest in injection pressures of 3000 bar and higher for further emissions reduction and fuel efficiency improvements. Fundamental understanding of diesel spray characteristics including very early injection and non-vaporizing spray penetration is essential to improve model development and facilitate the integration of advanced injection systems with elevated injection pressure into future diesel engines. Studies were conducted in an optically accessible constant volume combustion vessel under non-vaporizing conditions. Two advanced high pressure multi-hole injectors were used with different hole diameters, number of holes, and flow rates, with only one plume of each injector being imaged to enable high frame rate imaging.
Technical Paper

Windowed Selected Moving Autocorrelation (WSMA), Tri-Correlation (TriC), and Misfire Detection

2005-04-11
2005-01-0647
In this paper, two correlations, Windowed Selected Moving Autocorrelation (WSMA) and Tri-Correlation (TriC), are introduced and discussed. The WSMA is simpler than the conventional autocorrelation. WSMA uses less data points to obtain useful signal content at desired frequencies. The computational requirement is therefore reduced compared to the conventional autocorrelation. The simplified TriC provides improved signal to noise separation capability than WSMA does while still requiring reduced computational effort compared to the standard autocorrelation. Very often, computation resource limitation exists for real-time applications. Therefore, the WSMA and TriC offer more opportunities for real-time monitor and feedback control applications in the frequency domain due to their high efficiencies. As an example, applications in internal combustion (IC) engine misfire detection are presented. Simulation and vehicle test results are also presented in this paper.
Technical Paper

Development of Multiple Injection Strategy for Gasoline Compression Ignition High Performance and Low Emissions in a Light Duty Engine

2022-03-29
2022-01-0457
The increase in regulatory demand to reduce CO2 emissions resulted in a focus on the development of novel combustion modes such as gasoline compression ignition (GCI). It has been shown by others that GCI can improve the overall engine efficiency while achieving soot and NOx emissions targets. In comparison with diesel fuel, gasoline has a higher volatility and has more resistance to autoignition, therefore, it has a longer ignition delay time which facilitates better mixing of the air-fuel charge before ignition. In this study, a GCI combustion system has been tested using a 2.2L compression ignition engine as part of a US Department of Energy funded project. For this purpose, a multiple injection strategy was developed to improve the pressure rise rates and soot emission levels for the same engine out NOx emissions.
Technical Paper

Influence of the Nozzle Geometry of a Diesel Single-Hole Injector on Liquid and Vapor Phase Distributions at Engine-Like Conditions

2013-09-08
2013-24-0038
The paper describes an experimental activity on the spatial and temporal liquid- and vapor-phase distributions of diesel fuel at engine-like conditions. The influence of the k-factor (0 and 1.5) of a single-hole axial-disposed injector (0.100 mm diameter and 10 L/d ratio) has been studied by spraying fuel in an optically-accessible constant-volume combustion vessel. A high-speed imaging system, capable of acquiring Mie-scattering and Schlieren images in a near simultaneous fashion mode along the same line of sight, has been developed at the Michigan Technological University using a high-speed camera and a pulsed-wave LED system. The time resolved pair of schlieren and Mie-scattering images identifies the instantaneous position of both the vapor and liquid phases of the fuel spray, respectively. The studies have been performed at three injection pressures (70, 120 and 180 MPa), 23.9 kg/m3 ambient gas density and 900 K gas temperature in the vessel.
Technical Paper

An Experimental Study of Active Regeneration of an Advanced Catalyzed Particulate Filter by Diesel Fuel Injection Upstream of an Oxidation Catalyst

2006-04-03
2006-01-0879
Passive regeneration (oxidation of particulate matter without using an external energy source) of particulate filters in combination with active regeneration is necessary for low load engine operating conditions. For low load conditions, the exhaust gas temperatures are less than 250°C and the PM oxidation rate due to passive regeneration is less than the PM accumulation rate. The objective of this research was to experimentally investigate active regeneration of a catalyzed particulate filter (CPF) using diesel fuel injection in the exhaust gas after the turbocharger and before a diesel oxidation catalyst (DOC) and to collect data for extending the MTU 1-D 2-layer model to include the simulation of active regeneration. The engine used in this study was a 2002 Cummins ISM turbo charged 10.8 L heavy duty diesel engine with cooled EGR. The exhaust after-treatment system consisted of a Johnson Matthey DOC and CPF (a CCRT®).
Technical Paper

Effect of State of Charge Constraints on Fuel Economy and Battery Aging when Using the Equivalent Consumption Minimization Strategy

2018-04-03
2018-01-1002
Battery State of Charge (SOC) constraints are used to prevent the battery in Hybrid Electric Vehicles (HEVs) from over-charging or over-discharging. These constraints strongly influence the power-split of the HEV. This paper presents results on how Battery State of Charge (SOC) constraints effects Lithium ion battery aging and fuel economy when using the Equivalent Consumption Minimization Strategy (ECMS). The vehicle studied is the Honda Civic Hybrid. The battery used is A123 Systems’ ANR26650 battery cell. Vehicle simulation uses multiple combinations of highway and city drive cycles. For each combination of drive cycles, nine SOC constraints ranges are used. Battery aging is evaluated using a semi-empirical model combined with the accumulated Ah-throughput method which uses, as an input, the battery SOC trajectory from the vehicle simulations. The simulation results provide insight into how SOC constraints effect fuel economy as well as battery aging.
X