Refine Your Search

Topic

Author

Search Results

Journal Article

Electrical Architecture Optimization and Selection - Cost Minimization via Wire Routing and Wire Sizing

2014-04-01
2014-01-0320
In this paper, we propose algorithms for cost minimization of physical wires that are used to connect electronic devices in the vehicle. The wiring cost is one of the most important drivers of electrical architecture selection. Our algorithms perform wire routing from a source device to a destination device through harnesses, by selecting the optimized wire size. In addition, we provide optimized splice allocation with limited constraints. Based on the algorithms, we develop a tool which is integrated into an off-the-shelf optimization and workflow system-level design tool. The algorithms and the tool provide an efficient, flexible, scalable, and maintainable approach for cost analysis and architecture selection.
Journal Article

Advancement in Vehicle Development Using the Auto Transfer Path Analysis

2014-04-01
2014-01-0379
This paper presents the most recent advancement in the vehicle development process using the one-step or auto Transfer Path Analysis (TPA) in conjunction with the superelement, component mode synthesis, and automated multi-level substructuring techniques. The goal is to identify the possible ways of energy transfer from the various sources of excitation through numerous interfaces to given target locations. The full vehicle model, consists of superelements, has been validated with the detailed system model for all loadcases. The forces/loads can be from rotating components, powertrain, transfer case, chain drives, pumps, prop-shaft, differential, tire-wheel unbalance, road input, etc., and the receiver can be at driver/passenger ears, steering column/wheel, seats, etc. The traditional TPA involves two solver runs, and can be fairly complex to setup in order to ensure that the results from the two runs are consistent with subcases properly labeled as input to the TPA utility.
Journal Article

Simulation Fidelity Improvement of H350 Lower Tibia Indices

2015-04-14
2015-01-0578
Finite element dummy models have been more and more widely applied in virtual development of occupant protection systems across the automotive industry due to their predictive capabilities. H350 dyna dummy model [1] is a finite element representation of the Hybrid III male dummy [2], which is designed to represent the average of the United States adult male population. Lower extremity injuries continue to occur in front crash accidents despite increasing improvement of vehicle crashworthiness and occupant restraint system. It is therefore desirable to predict lower tibia injury numbers in front occupant simulations. Though lower tibia loading/index predictions are not studied as much as the FMVSS 208 regulated injury numbers, the tibia indices are injury criteria that need to be assessed during IIHS and Euro NCAP frontal offset occupant simulations. However during front crash simulations, it is very difficult to achieve good correlations or predictions of lower tibia loadings.
Journal Article

Prediction of Interior Noise in a Sedan Due to Exterior Flow

2015-06-15
2015-01-2331
Aero-vibro-acoustic prediction of interior noise associated with exterior flow requires accurate predictions of both fluctuating surface pressures across the exterior of a vehicle and efficient models of the vibro-acoustic transmission of these surface pressures to the interior of a vehicle. The simulation strategy used in this paper combines both CFD and vibro-acoustic methods. An accurate excitation field (which accounts for both hydrodynamic and acoustic pressure fluctuations) is calculated with a hybrid CAA approach based on an incompressible unsteady flow field with an additional acoustic wave equation. To obtain the interior noise level at the driver's ears a vibro-acoustic model is used to calculate the response of the structure and interior cavities. The aero-vibro-acoustic simulation strategy is demonstrated for a Mercedes-Benz S-class and the predictions are compared to experimental wind tunnel measurements.
Journal Article

Chevrolet Volt Electric Utilization

2015-04-14
2015-01-1164
Evaluation of one year of in-use operating data from first generation Chevrolet Volt Extended-Range Electric Vehicle (E-REV) retail customers determined trip initial Internal Combustion Engine (ICE) starts were reduced by 70% relative to conventional vehicles under the same driving conditions. These Volt drivers were able to travel 74% of their total miles in EV without requiring the ICE's support. Using this first generation Volt data, performance of the second generation Volt is projected. The Southern California Association of Governments (SCAG) Regional Travel Survey (RTS) data set was also processed to make comparisons between realistic PHEV constraints and E-REV configurations. A Volt characteristic E-REV was found to provide up to 40 times more all-electric trips than a PHEV over the same data set.
Technical Paper

On the Impact of the Maximum Available Tire-Road Friction Coefficient Awareness in a Brake-Based Torque Vectoring System

2010-04-12
2010-01-0116
Tire-road interaction is one of the main concerns in the design of control strategies for active/semi-active differentials oriented to improve handling performances of a vehicle. In particular, the knowledge of the friction coefficient at the tire-road interface is crucial for achieving the best performance in any working condition. State observers and estimators have been developed at the purpose, based on the measurements traditionally carried out on board vehicle (steer angle, lateral acceleration, yaw rate, wheels speed). However, until today, the problem of tire-road friction coefficient estimation (and especially of its maximum value) has not completely been solved. Thus, active control systems developed so far rely on a driver manual selection of the road adherence condition (anyway characterized by a rough and imprecise quality) or on a conservative tuning of the control logic in order to ensure vehicle safety among different tire-road friction coefficients.
Technical Paper

Relationship Between Driver Eyes-Off-Road Interval and Hazard Detection Performance Under Automated Driving

2016-04-05
2016-01-1424
Partially automated driving involves the relinquishment of longitudinal and/or latitudinal control to the vehicle. Partially automated systems, however, are fallible and require driver oversight to avoid all road hazards. Researchers have expressed concern that automation promotes extended eyes-off-road (EOR) behavior that may lead to a loss of situational awareness (SA), degrading a driver’s ability to detect hazards and make necessary overrides. A potential countermeasure to visual inattention is the orientation of the driver’s glances towards potential hazards via cuing. This method is based on the assumption that drivers are able to rapidly identify hazards once their attention is drawn to the area of interest regardless of preceding EOR duration. This work examined this assumption in a simulated automated driving context by projecting hazardous and nonhazardous road scenes to a participant while sitting in a stationary vehicle.
Technical Paper

μAFS High Resolution ADB/AFS Solution

2016-04-05
2016-01-1410
A cooperation of several research partners supported by the German Federal Ministry of Research and Education proposes a new active matrix LED light source. A multi pixel flip chip LED array is directly mounted to an active driver IC. A total of 1024 pixel can be individually addressed through a serial data bus. Several of these units are integrated in a prototype headlamp to enable advanced light distribution patterns in an evaluation vehicle.
Technical Paper

Implementation of an Open-Loop Controller to Design the Longitudinal Vehicle Dynamics in Passenger Cars

2017-03-28
2017-01-1107
In order to offer a wide range of driving experiences to their customers, original equipment manufacturers implement different driving programs. The driver is capable of manually switching between these programs which alter drivability parameters in the engine control unit. As a result, acceleration forces and gradients are modified, changing the perceived driving experience. Nowadays, drivability is calibrated iteratively through road testing. Hence, the resulting set of parameters incorporated within the engine control unit is strongly dependent on the individual sentiments and decisions of the test engineers. It is shown, that implementing a set of objective criteria offers a way to reduce the influences of personal preferences and sentiments in the drivability calibration process. In combination with the expertise of the test engineers, the desired vehicle behavior can be formalized into a transient set point sequence to give final shape to the acceleration behavior.
Technical Paper

Standardization of Wiring Harness Data Formats between Truck OEMs and Suppliers

2011-09-13
2011-01-2270
The continuously integration of electrics and electronics (EE) in the last decades is one of the main key drivers for innovation and business success of the Automotive OEMs. This is also applicable for truck manufacturers. On the other side factors like the rising vehicle complexity, number of variants and the warranty costs for EE issues are increasing the pressure on the engineering teams responsible for the mechatronic systems. To address these issues one of the key activities in the European market (focus on Germany) during the last decade was to introduce industry-wide standards for the data transfer of wiring harness data between OEM and harness supplier. In this paper the benefits and technical background of using the standards KBL and KOMP formats within the MB-Trucks brand will be presented. Moreover the role of the Information Technology (IT) will be explained in detail.
Technical Paper

Numerical Investigation of the Vertical Dynamics of an Agricultural Vehicle Operating on Deformable Soil

2012-04-16
2012-01-0764
This work focuses on the analysis of the vertical dynamics of an agricultural tractor, investigating the influence of suspensions' parameters on riding comfort and contact forces. The use of lugged tires coupled with the operation over banked, irregular and deformable tracks, determines significant levels of vertical acceleration over several components of the tractor. These operating conditions have a direct effect on the driver, whose alertness and efficiency are undermined by the exposure to high levels of acceleration for a long time. Secondly, variations of the normal and traction forces provided by the tires affect the quality of tillage and other operations. The paper presents a multi-body vehicle model of a tractor interfaced with a tire-soil contact model allowing to take into account soil's deformation and tread pattern design.
Technical Paper

A Rough Road Ride Simulation Assessment with Flexible Vehicle Body

2014-04-01
2014-01-0112
A rough road ride assessment provides an insightful evaluation of vehicle responses beyond the frequency range of suspension or steering modes. This is when body structure influence on the vehicle performance can be detected by vehicle occupants. In this paper, a rough road is used to evaluate vehicle ride performance and multi-body simulation (MBS) models are developed along with finite-element (FE) representations of the vehicle body and structure. To produce high fidelity simulation results in the frequency range of interest, various vehicle subsystem modeling contents are examined. A case study of a vehicle model with two different structures is provided. Time histories and frequency based analyses are used to obtain insights into the effects of body structure on vehicle responses. Finally, two metrics (‘Isolation’ and ‘Shake’) are used to distinguish the vehicle ride performance.
Technical Paper

AUTOSAR Software Platform Adoption: Systems Engineering Strategies

2014-04-01
2014-01-0289
AUTOSAR(AUTomotive Open System ARchitecture) establishes an industry standard for OEMs and the supply chain to manage growing complexity to the automotive electronics domain. Increased focus on software based features will prove to be a key differentiator between vehicle platforms. AUTOSAR serves to standardize automotive serial data communication protocols, interaction with respect to hardware peripherals within an ECU and allow ECU implementer to focus on development of unique customer focused features that distinguish product offerings. Adoption strategy and impact assessment associated with leveraging AUTOSAR for an E/E Architecture and the potential challenges that need to be considered will be described in this publication. This publication will also illustrate development strategies that need to be considered w.r.t deploying AUTOSAR like data exchange, consistency to BSW software implementation, MCAL drivers etc.
Technical Paper

Instrumented Steering Wheel for Accurate ADAS Development

2019-04-02
2019-01-1241
We introduce in this paper a new Instrumented Steering Wheel (ISW) for ADAS development. The ISW has been designed, constructed and employed with satisfactory results. The ISW is able to measure three forces, three moments and the grip force at each hand of the driver. The ISW has been used for ADAS activities on an instrumented road vehicle. The aim was to use both the vehicle states and the ISW data for evaluating the driver behaviour. Two research activities were performed. The first activity refers to monitoring the driver behaviour during tests on a track. The second activity refers to the use of haptic ISWs, able to improve the ADAS systems. Referring to the first activity, the greatest majority of drivers applied always the same sequence of forces (pull, radial, tangential) either during emergency manoeuvres, either during slow speed curving.
Technical Paper

The Effect of Pre-Crash Safety Systems to Occupant Protection in Offset Frontal Impacts

2015-01-14
2015-26-0164
The ASSESS project is a European Commission co-funded project that aimed to develop harmonized and standardized assessment procedures for collision mitigation and avoidance systems. ASSESS was one of the first European projects which dealt in depth with the concept of integrated safety, defining methodologies to analyse vehicle safety from a global point of view. As such, the developed procedures included driver behaviour evaluation, pre-crash and crash system performance evaluation and socio-economic assessment. The activities performed for the crash evaluation focussed on the influence of braking manoeuvres in occupant positioning through dynamic braking manoeuvres with real occupants and Madymo and LS-Dyna simulations. The assessment of the passive safety protection level according to the results of the influence of the active systems is based on sled testing and full vehicle testing.
Technical Paper

Energy Efficiency Impact of Localized Cooling/Heating for Electric Vehicle

2015-04-14
2015-01-0352
The present paper reports on a study of the HVAC energy usage for an EREV (extended range electric vehicle) implementation of a localized cooling/heating system. Components in the localized system use thermoelectric (TE) devices to target the occupant's chest, face, lap and foot areas. A novel contact TE seat was integrated into the system. Human subject comfort rides and a thermal manikin in the tunnel were used to establish equivalent comfort for the baseline and localized system. The tunnel test results indicate that, with the localized system, HVAC energy savings of 37% are achieved for cooling conditions (ambient conditions greater than 10 °C) and 38% for heating conditions (ambient conditions less than 10 °C), respectively based on an annualized ambient and vehicle occupancy weighted method. The driving range extension for an electric vehicle was also estimated based on the HVAC energy saving.
Technical Paper

How to Model Real-World Driving Behavior? Probability-Based Driver Model for Energy Analyses

2019-04-02
2019-01-0511
A wide variety of applications such as driver assistant and energy management systems are researched and developed in virtual test environments. The safe testing of the applications in early stages is based on parameterizable and reproducible simulations of different driving scenarios. One possibility is modeling the microscopic driving behavior to simulate the longitudinal vehicle dynamics of individual vehicles. The currently used driver models are characterized by a conflict regarding comprehensibility, accuracy and calibration effort. Due to the importance for further analyses this conflict of interests is addressed by the presentation of a new microscopic driver model in this paper. The proposed driver model stores measured driving behaviors with its statistical distributions in maps. Thereby, the driving task is divided into free flow, braking in front of stops and following vehicles ahead. This makes it possible to display the driving behavior in its entirety.
Technical Paper

Approach for Parameter Determination for Objective Comfort Evaluation of the Vehicle Vibration Induced by Powertrain

2014-06-30
2014-01-2065
The driving comfort influences the customer purchase decision; hence it is an important aspect for the vehicle development. To better quantify the comfort level and reduce the experiment costs in the development process, the subjective comfort assessment by test drivers is nowadays more and more replaced by the objective comfort evaluation. Hereby the vibration comfort is described by scalar objective characteristic parameters that correlate with the subjective assessments. The correlation analysis requires the assessments and measurements at different vehicle vibration. To determine the objective parameters regarding the powertrain excitations, most experiments in the previous studies were carried out in several test vehicles with different powertrain units.
Technical Paper

Holistic Approach for Improved Safety Including a Proposal of New Virtual Test Conditions of Small Electric Vehicles

2015-04-14
2015-01-0571
In the next 20 years the share of small electric vehicles (SEVs) will increase especially in urban areas. SEVs show distinctive design differences compared to traditional vehicles. Thus the consequences of impacts of SEVs with vulnerable road users (VRUs) and other vehicles will be different from traditional collisions. No assessment concerning vehicle safety is defined for vehicles within European L7e category currently. Focus of the elaborated methodology is to define appropriate test scenarios for this vehicle category to be used within a virtual tool chain. A virtual tool chain has to be defined for the realization of a guideline of virtual certification. The derivation and development of new test conditions for SEVs are described and are the main focus of this work. As key methodology a prospective methodical analysis under consideration of future aspects like pre-crash safety systems is applied.
Technical Paper

Analytical and Experimental Handling Performance of Ultra-Efficient Lightweight Vehicles

2023-08-28
2023-24-0135
The rising environmental awareness has led to a growing interest in electric and lightweight vehicles. Four-wheeled Ultra-Efficient Lightweight Vehicles (UELVs) have the potential to improve the quality of urban life, reduce environmental impact and make efficient use of land. However, the safety of these vehicles in terms of dynamic behaviour needs to be better understood. This paper aims to provide a quantitative assessment of the handling behaviour of UELVs. An analytical single-track model and a numerical simulation by VI-CarRealTime are analysed to evaluate the dynamic performance of a UELV compared to a city car. This analysis shows that the lightweight vehicle has a higher readiness (i.e. lower reaction time to yaw rate) for step steering and lower steering effort (i.e. higher steady-state value). Experimental analysis through real-time driving sessions on the Dynamic Driving Simulator assesses vehicle responses and subjective perception for different manoeuvres.
X