Refine Your Search

Topic

Author

Affiliation

Search Results

Video

Ford: Driving Electric Car Efficiency

2012-03-29
The Focus Electric is Ford�s first full-featured 5 passenger battery electric vehicle. The engineering team set our sights on achieving best-in-class function and efficiency and was successful with an EPA certified 1XX MPGe and range XXX then the facing competition allowing for a slightly lower capacity battery pack and larger vehicle without customer trade-off. We briefly overview the engineering method and technologies employed to deliver the results as well as sharing some of the functional challenges unique to this type of vehicle. Presenter Charles Gray, Ford Motor Co.
Video

The Future (& Past) of Electrified Vehicles

2011-11-04
The presentation offers a brief history of the electric vehicle and parallels the realities of those early vehicles with the challenges and solutions of the electrified vehicles coming to market today. A technology evolution for every major component of these vehicles has now made this mode of transportation viable. The Focus Electric is Ford's first electric passenger car utilizing the advanced technology developments to meet the needs of electric car buyers in this emerging market. Presenter Charles Gray, Ford Motor Co.
Video

Hybrid Vehicle Battery OBD: Why, Wherefore, and How

2012-02-01
Plug In Charging Systems are mainly responsible for transferring energy from the electric power grid into one or more vehicle energy storage devices (e.g. batteries). A satisfactorily operating Plug in Charging System has the following three key performance characteristics. First, the charge process starts up easily. Second, it completes the charge process within some expected time. Third, it charges efficiently so that excessive amounts of power are not wasted. When a Plug In Charging System malfunction exists and negatively affects one or more of these key performance criteria, it is the responsibility of the OBD monitoring system to identify the fault and notify the customer. The presentation will discuss the key performance characteristics described above and some of the diagnostic strategies used to detect faults. The discussion will also include an overview of MIL illumination and freeze frame storage capabilities.
Video

C-Max Energi - Ford's Plug-In Solution

2011-11-07
Evolving the current state of the art Hybrid Technology for vehicles with plug-in capability will yield three significant results, the displacement of petroleum with electricity for transportation, improved efficiency and reduced emissions. As the technology evolves from the Ford Escape Hybrid Plug-In demo fleet, Ford is in the final stages of development of the C-Max Energi, which will be delivered in 2012 as a highly efficient, full purpose vehicle designed to meet customer expectations without compromise. Presenter Charles Gray, Ford Motor Co.
Video

Test Method for Seat Wrinkling and Bagginess

2012-05-22
This study evaluates utilizing an accelerated test method that correlates customer interaction with a vehicle seat where bagginess and wrinkling is produced. The evaluation includes correlation from warranty returns as well as test vehicle results for test verification. Consumer metrics will be discussed within this paper with respect to potential application of this test method, including but not limited to JD Power ratings. The intent of the test method is to aid in establishing appropriate design parameters of the seat trim covers and to incorporate appropriate design measures such as tie downs and lamination. This test procedure was utilized in a Design for Six Sigma (DFSS) project as an aid in optimizing seat parameters influencing trim cover performance using a Design of Experiment approach. Presenter Lisa Fallon, General Motors LLC
Journal Article

Occupant Preferred Back Angle Relative to Head Restraint Regulations

2010-04-12
2010-01-0779
Having, by now, introduced several new vehicles that comply with FMVSS 202a, manufacturers are reporting an increased number of complaints from consumers who find that the head restraint is too close; negatively affecting their posture. It is speculated that one of the reasons that head restraints meeting the new requirement are problematic is that the FMVSS backset measurement is performed at a back angle that is more reclined than the back angle most drivers choose and the back angle at which the seat / vehicle was designed. The objective of this paper is to confirm this hypothesis and elaborate on implications for regulatory compliance in FMVSS 202a.
Journal Article

Deformation Analysis of Incremental Sheet Forming

2010-04-12
2010-01-0991
Incremental Sheet Forming (ISF) is an emerging sheet metal prototyping technology where a part is formed as one or more stylus tools are moving in a pre-determined path and deforming the sheet metal locally while the sheet blank is clamped along its periphery. A deformation analysis of incremental forming process is presented in this paper. The analysis includes the development of an analytical model for strain distributions based on part geometry and tool paths; and numerical simulations of the forming process with LS-DYNA. A skew cone is constructed and used as an example for the study. Analytical and numerical results are compared, and excellent correlations are found. It is demonstrated that the analytical model developed in this paper is reliable and efficient in the prediction of strain distributions for incremental forming process.
Journal Article

Power Management of Hybrid Electric Vehicles based on Pareto Optimal Maps

2014-04-01
2014-01-1820
Pareto optimal map concept has been applied to the optimization of the vehicle system control (VSC) strategy for a power-split hybrid electric vehicle (HEV) system. The methodology relies on an inner-loop optimization process to define Pareto maps of the best engine and electric motor/generator operating points given wheel power demand, vehicle speed, and battery power. Selected levels of model fidelity, from simple to very detailed, can be used to generate the Pareto maps. Optimal control is achieved by applying Pontryagin's minimum principle which is based on minimization of the Hamiltonian comprised of the rate of fuel consumption and a co-state variable multiplied by the rate of change of battery SOC. The approach delivers optimal control for lowest fuel consumption over a drive cycle while accounting for all critical vehicle operating constraints, e.g. battery charge balance and power limits, and engine speed and torque limits.
Journal Article

Compressive Behavior of Representative Volume Element Specimens of Lithium-Ion Battery Cells under Different Constrained Conditions

2014-04-01
2014-01-1987
The compressive behavior of lithium-iron phosphate battery cells is investigated by conducting in-plane constrained compression tests and out-of-plane compression tests of representative volume element (RVE) specimens. The results for cell RVE specimens under in-plane constrained compression tests without pre-strains and with pre-strains in the out-of-plane direction indicate that the load carrying capacity is characterized by the buckling of cell specimens. As the pre-strain increases, the nominal compressive stress-strain curve becomes higher. The nominal stress-strain curves in the out-of-plane direction were also obtained and used to determine the elastic moduli for the elastic buckling analyses of the cell components in the cell RVE specimens with different pre-strains. Based on the elastic buckling analyses for a beam with different lateral constraints due to different pre-strains in the out-of-plane direction, the number of half waves and the buckling stresses were obtained.
Journal Article

A Copula-Based Approach for Model Bias Characterization

2014-04-01
2014-01-0735
Available methodologies for model bias identification are mainly regression-based approaches, such as Gaussian process, Bayesian inference-based models and so on. Accuracy and efficiency of these methodologies may degrade for characterizing the model bias when more system inputs are considered in the prediction model due to the curse of dimensionality for regression-based approaches. This paper proposes a copula-based approach for model bias identification without suffering the curse of dimensionality. The main idea is to build general statistical relationships between the model bias and the model prediction including all system inputs using copulas so that possible model bias distributions can be effectively identified at any new design configurations of the system. Two engineering case studies whose dimensionalities range from medium to high will be employed to demonstrate the effectiveness of the copula-based approach.
Journal Article

Model-Based Parameter Identification of Healthy and Aged Li-ion Batteries for Electric Vehicle Applications

2015-04-14
2015-01-0252
Electric vehicles are receiving considerable attention because they offer a more efficient and sustainable transportation alternative compared to conventional fossil-fuel powered vehicles. Since the battery pack represents the primary energy storage component in an electric vehicle powertrain, it requires accurate monitoring and control. In order to effectively estimate the battery pack critical parameters such as the battery state of charge (SOC), state of health (SOH), and remaining capacity, a high-fidelity battery model is needed as part of a robust SOC estimation strategy. As the battery degrades, model parameters significantly change, and this model needs to account for all operating conditions throughout the battery's lifespan. For effective battery management system design, it is critical that the physical model adapts to parameter changes due to aging.
Technical Paper

N&V Component Structural Integration and Mounted Component Durability Implications

2020-04-14
2020-01-1396
Exterior component integration presents competing performance challenges for balanced exterior styling, safety, ‘structural feel’ [1] and durability. Industry standard practices utilize noise and vibration mode maps and source-path-receiver [2] considerations for component mode frequency placement. This modal frequency placement has an influence on ‘structural feel’ and durability performance. Challenges have increased with additional styling content, geometric overhang from attachment points, component size and mass, and sensor modules. Base excitation at component attachment interfaces are increase due to relative positioning of the suspension and propulsion vehicle source inputs. These components might include headlamps, side mirrors, end gates, bumpers and fascia assemblies. Here, we establish basic expectations for the behavior of these systems, and ultimately consolidate existing rationales that are applied to these systems.
Journal Article

Development of an Improved Cosmetic Corrosion Test for Finished Aluminum Autobody Panels

2008-04-14
2008-01-1156
A task group within the SAE Automotive Corrosion and Protection (ACAP) Committee continues to pursue the goal of establishing a standard test method for in-laboratory cosmetic corrosion evaluations of finished aluminum auto body panels. The program is a cooperative effort with OEM, supplier, and consultant participation and is supported in part by USAMP (AMD 309) and the U.S. Department of Energy. Numerous laboratory corrosion test environments have been used to evaluate the performance of painted aluminum closure panels, but correlations between laboratory test results and in-service performance have not been established. The primary objective of this project is to identify an accelerated laboratory test method that correlates with in-service performance. In this paper the type, extent, and chemical nature of cosmetic corrosion observed in the on-vehicle exposures are compared with those from some of the commonly used laboratory tests
Journal Article

Centralized Torque Controller for a Nonminimum Phase Phenomenon in a Powersplit HEV

2012-04-16
2012-01-1026
Torque controls for the engine and electric motors in a Powersplit HEV are keys to the success of balancing fuel economy, driveability, and battery power control. The electric variable transmission (EVT) offers an opportunity to let the engine operate at system-optimal fuel efficient points independently of any load. Existing work shows such a benefit can be realized through a decentralized control structure that translates the driver inputs to independent engine torque and speed control. However, our study shows that the decentralized control structures have a fundamental limitation that arises from the nonminimum phase (NMP) zero in the transfer function from the driver power command to the generator torque change rate, and thus not only is it difficult to obtain smooth generator torque but also it can cause violations on battery power limits during transients. Additionally, it adversely affects the driveability due to the generator torque transients reflected at the ring gear.
Journal Article

A Pareto Frontier Analysis of Renewable-Energy Consumption, Range, and Cost for Hydrogen Fuel Cell vs. Battery Electric Vehicles

2012-04-16
2012-01-1224
As automakers strategize approaches to sustainable vehicle technologies, alternative powertrains must be considered to reduce future fleet vehicle emissions and improve energy security. These alternative vehicles include different fuels and electrification. The ultimate for on-road CO2 reductions is a zero emission vehicle, which can be achieved by either a hydrogen fuel cell or battery electric vehicle. These vehicles would also require a renewable energy source to provide their propulsion energy in order to achieve maximum sustainability for both CO2 reduction and energy security. Renewable energy sources such as wind or solar result in heat or electricity that needs to be generated into an energy carrier such as hydrogen or stored in a battery. When examining these options based strictly on the efficiency path, previous analysis have concluded fuel cell vehicles may not be an appropriate suitability strategy in comparison to battery electric vehicles.
Technical Paper

Ford's All New 4.6 Liter SOHC V-8 Engine for the Lincoln Town Car

1991-02-01
910680
Ford is introducing the first high volume domestically designed and produced overhead camshaft V-8 engine As the first entry of a family of V-8 engines, the 4.6L 2 valve per cylinder engine was created to replace Ford's work-horse small block V-8 family of pushrod engines. That family of engines was first produced in 1962 in a 221 cu. in. version and have since evolved into the 302 cu. in. (5.0L) engine which previously powered the Town Car. Design goals of the engine family were: Higher horsepower output combined with reduced engine displacement Improved fuel efficiency and reduced emissions Reduced noise and vibration Advanced technology Precision manufacturing Improved quality and durability Program Execution was accomplished by extensive use of teamwork processes, including Cross Functional Teams (CFTs) among Design Engineering, Manufacturing Engineering, Suppliers, Purchasing and Vehicle Engineering.
Journal Article

Cosmetic Corrosion Test for Aluminum Autobody Panels: Final Report

2010-04-12
2010-01-0726
Over the past several years a task group within the SAE Automotive Corrosion and Protection (ACAP) Committee has conducted extensive on-vehicle field testing and numerous accelerated lab tests with the goal of establishing a standard accelerated test method for cosmetic corrosion evaluations of finished aluminum auto body panels. This project has been a cooperative effort with OEM, supplier, and consultant participation and was also supported in part by DOE through USAMP (AMD 309). The focus of this project has been the identification of a standardized accelerated cosmetic corrosion test that exhibits the same appearance, severity, and type of corrosion products that are exhibited on identical painted aluminum panels exposed to service relevant environments. Multi-year service relevant exposures were conducted by mounting panels on-vehicles in multiple locations in the US and Canada.
Journal Article

Efficient Integration for a Hardware-In-the-Loop (HIL) System

2010-04-12
2010-01-0665
The integration of a HIL system involves many software and hardware elements. During the integration process, various errors may occur. In this paper, the Design For Six Sigma (DFSS) methodology is applied to develop an integration process for a generic type of HIL system. The development follows the DCOV (Design, Characterize, Optimize and Verify) four-phase approach. The result is an efficient process proven to meet the customer's needs, reduce integration errors and deliver a high quality HIL system within less time.
Technical Paper

Optimization of the Monitored Volume for LEV Catalyst Monitoring

1997-10-13
972847
A model of Ford's current FTP based OBD-II catalyst monitor has been developed and used in determining the optimal monitored catalyst volume for several LEV applications. The model predictions were found to agree reasonably well with the available experimental data. Furthermore, the results of this study indicate that the optimal monitored catalyst volume for meeting LEV requirements is vehicle application specific. As a result, it is concluded that a general guideline for sizing of the monitored catalyst volume for LEVs will most likely be inadequate and could result in grossly suboptimal catalyst monitor function for some applications. The model which is described in this paper offers a potentially more effective means of determining the best monitored catalyst volume for a given vehicle application. It should be possible to utilize this model during the early phase of a vehicle program in order to provide for the optimal packaging of the catalyst monitor sensor (CMS).
X