Refine Your Search

Topic

Author

Search Results

Journal Article

A Study of Controlled Auto-Ignition in Small Natural Gas Engines

2013-10-15
2013-32-9098
Research has been conducted on Controlled Auto-Ignition (CAI) engine with natural gas. CAI engine has the potential to be highly efficient and to produce low emissions. CAI engine is potentially applicable to automobile engine. However due to narrow operating range, CAI engine for automobile engine which require various speed and load in real world operation is still remaining at research level. In comparison some natural gas engines for electricity generation only require continuous operation at constant load. There is possibility of efficiency enhancement by CAI combustion which is running same speed at constant load. Since natural gas is primary consisting of methane (CH4), high auto-ignition temperature is required to occur stable auto-ignition. Usually additional intake heat required to keep stable auto-ignition. To keep high compression temperature, single cylinder natural gas engine with high compression ratio (CR=26) was constructed.
Journal Article

Development of a New Metal Substrate for Lean NOx Trap

2008-04-14
2008-01-0806
This paper presents a new substrate for Lean NOx Traps (LNT) which enables high NOx conversion efficiency, even after long-term aging, when using alkali metals as the NOx adsorber. When a conventional metal honeycomb is used as the LNT substrate, the chromium in the metal substrate migrates into the washcoat and reacts with the alkali metals after thermal aging. In order to help prevent this migration, we have developed a new substrate where a fine -alumina barrier is precipitated to the surface of the metal substrate. The new substrate is highly capable of preventing migration of chromium into the washcoat and greatly enhances the NOx conversion. The durability of the new substrate and emission test using a test vehicle are also examined.
Journal Article

Multi-Variable Air-Path Management for a Clean Diesel Engine Using Model Predictive Control

2009-04-20
2009-01-0733
Recently, emission regulations have been strict in many countries, and it is very difficult technical issue to reduce emissions of diesel cars. In order to reduce the emissions, various combustion technologies such as Massive EGR, PCCI, Rich combustion, etc. have been researched. The combustion technologies require precise control of the states of in-cylinder gas (air mass flow, EGR rate etc.). However, a conventional controller such as PID controller could not provide sufficient control accuracy of the states of in-cylinder gas because the air-pass system controlled by an EGR valve, a throttle valve, a variable nozzle turbo, etc. is a multi-input, multi-output (MIMO) coupled system. Model predictive control (MPC) is well known as the advanced MIMO control method for industrial process. Generally, the sampling period of industrial process is rather long so there is enough time to carry out the optimization calculation for MPC.
Journal Article

Investigation of Combustion Diagnosis System Applied for the Development of General Purpose Utility Engines

2012-10-23
2012-32-0100
The chief goal of engineers studying internal combustion engines is to improve energy efficiency in the face of the increasingly severe global warming and energy issues. Hence, there have been numerous studies focusing on the combustion reactions in order to develop clean and reliable combustion that is capable of operating using less fuel. And to improve the comprehension of engine performance and its combustion reactions, development of comprehensive measurement technique for engine performance, in-cylinder visualization technique, and numerical simulations, is essential and strongly demanded. There have hitherto been numerous studies about combustion diagnostics and analysis, including high-efficiency measurement techniques using response surface method the air-fuel mixture distribution and flame propagation measurement with optical visualization techniques, and numerical calculations of combustion reaction with elementary reactions.
Journal Article

Prediction of Wear Loss of Exhaust Valve Seat of Gasoline Engine Based on Rig Test Result

2018-04-03
2018-01-0984
The purpose of this research was to predict the amount of wear on exhaust valve seats in durability testing of gasoline engines. Through the rig wear test, a prediction formula was constructed with multiple factors as variables. In the rig test, the wear rate was measured in some cases where a number of factors of valve seat wear were within a certain range. Through these tests, sensitivity for each factor was determined from the measured wear data, and then a prediction formula for calculating the amount of wear was constructed with high sensitivity factors. Combining the wear amount calculation formula with the operation mode of the actual engine, the wear amount in that mode can be calculated. The calculated wear amount showed a high correlation with the wear amount measured in bench tests and the wear amount measured in vehicle tests.
Journal Article

In-cylinder Optical Investigation of Combustion Behavior on a Fast Injection Rate Diesel Common Rail Injector

2011-08-30
2011-01-1821
The field of diesel combustion research is producing numerous reports on studies of premixed combustion, which promises simultaneous reduction of both NOx and soot, in order to meet increasingly stringent regulations on harmful emissions from automobiles. However, although premixed combustion can simultaneously reduce both NOx and soot, certain issues have been pointed out, including the fact that it emits greater quantities of unburned HC and CO gases and the fact that it limits the operating range. Furthermore, this combustion method sets the ignition delay longer with the aim of promoting the mixing of fuel and air. This raises issues with the product due to the combustion instability and sensitivity to the uneven fuel properties that are found on the market, the capability of the engine response under transient conditions, the deterioration in combustion noise, and so on.
Journal Article

NOx Trap Three-Way Catalyst (N-TWC) Concept: TWC with NOx Adsorption Properties at Low Temperatures for Cold-Start Emission Control

2015-04-14
2015-01-1002
A new concept for trapping NOx and HC during cold start, the NOx Trap Three-Way Catalyst (N-TWC), is proposed. N-TWC adsorbs NOx at room temperature, and upon reaching activation temperature under suitable air-fuel ratio conditions, it reduces the adsorbed NOx. This allows a reduction in NOx emissions during cold start. N-TWC's reduction mechanism relies on NOx adsorption sites which are shown to be highly dispersed palladium on acid sites in the zeolite. Testing on an actual vehicle equipped with N-TWC confirmed that N-TWC is able to reduce emissions of NOx and HC during cold start, which is a challenge for conventional TWCs.
Technical Paper

Study on Emission Reducing Method with New Lean NOX Catalyst for Diesel Engines

2007-07-23
2007-01-1933
In recent years, emission regulations have become more stringent as a result of increased environmental awareness in each region of the world. For diesel engines, reducing NOX emissions is a difficult technical challenge.[1],[2],[3],[4]. To respond to these strict regulations, an exhaust gas aftertreatment system was developed, featuring a lean NOX catalyst (LNC) that uses a new chemical reaction mechanism to reduce NOX. The feature of the new LNC is the way it reduces NOX through an NH3-selective catalytic reduction (SCR), in which NOX adsorbed in the lean mixture condition is converted to NH3 in the rich mixture condition and reduced in the following lean mixture condition. Thus, the new system allows the effective reduction of NOX. However, in order to realize cleaner emission gases, precise engine control in response to the state of the exhaust aftertreatment system is essential.
Technical Paper

Study on Low NOX Emission Control Using Newly Developed Lean NOX Catalyst for Diesel Engines

2007-04-16
2007-01-0239
In recent years, emission regulations have become more stringent as a result of increased environmental awareness in each region of the world. For lean-burn diesel engines, since it is not possible to use three-way catalytic converters, reducing NOX emissions is a difficult technical challenge. To respond to these strict regulations, an exhaust gas aftertreatment system was developed, featuring a lean NOX catalyst (LNC) that uses a new chemical reaction mechanism to reduce NOX. The feature of the new LNC is the way it reduces NOX through an NH3-selective catalytic reduction (SCR), in which NOX adsorbed in the lean mixture condition is converted to NH3 in the rich mixture condition and reduced in the following lean mixture condition. Thus, the new system allows more efficient reduction of NOX than its conventional counterparts. However, an appropriate switching control between lean and rich mixture conditions along with compensation for catalyst deterioration was necessary.
Technical Paper

Management System for Continuously Variable Valve Lift Gasoline Engine

2007-04-16
2007-01-1200
A continuously variable valve lift gasoline engine can improve fuel consumption by reducing pumping loss and increase maximum torque by optimizing valve lift and cam phase according to engine speed. In this research, a new control system to simultaneously ensure good driveability and low emissions was developed for this low fuel consumption, high power engine. New suction air management through a master-slave control made it possible to achieve low fuel consumption and good driveability. To regulate the idle speed, a new controller featuring a two-degree-of-freedom sliding-mode algorithm with cooperative control was designed. This controller can improve the stability of idle speed and achieve the idle operation with a lower engine speed. To reduce emissions during cold start condition, an ignition timing control was developed that combine I-P control with a sliding mode control algorithm.
Technical Paper

Inhibition Effect of Ethanol on Homogeneous Charge Compression Ignition of Heptane

2008-10-06
2008-01-2504
It is important in the application of bio-ethanol in homogeneous-charge compression ignition (HCCI) engines to investigate the HCCI combustion characteristics of ethanol. As the inhibitory mechanism of ethanol on HCCI combustion is a key factor, simulated chemical reactions are necessary. In this study, chemical reaction simulations in the combustion chamber of a rapid compression machine (RCM) were performed in order to investigate the inhibitory mechanism of ethanol on the HCCI combustion of heptane. The sensitivity analysis results suggested that the OH radical consumption reaction by ethanol that occurs would inhibit the cool flame reaction of heptane. Furthermore, visualization of HCCI combustion with the RCM was conducted using a quartz glass combustion chamber head and ICCD camera. As a result, the cool flame luminescence intensity of heptane was reduced by the addition of ethanol.
Technical Paper

A Study of High Power Output Diesel Engine with Low Peak Cylinder Pressure

2010-04-12
2010-01-1107
This study examined a high-speed, high-powered diesel engine featuring a pent-roof combustion chamber and straight ports, with the objective of improving the specific power of the engine while minimizing any increase in the maximum cylinder pressure (Pmax). The market and contemporary society expect improvements in the driving performance of diesel-powered automobiles, and increased specific power so that engine displacement can be reduced, which will lessen CO2 emissions. When specific power is increased through conventional methods accompanied with a considerable increase in Pmax, the engine weight is increased and friction worsens. Therefore, the authors examined new technologies that would allow to minimize any increase in Pmax by raising the rated speed from the 4000 rpm of the baseline engine to 5000 rpm, while maintaining the BMEP of the baseline engine.
Technical Paper

Engine Knock Toughness Improvement Through Water Jacket Optimization

2003-10-27
2003-01-3259
Improvement of engine cycle thermal efficiency is an effective way to increase engine torque and to reduce fuel consumption simultaneously. However, the extent of the improvement is limited by engine knock, which is more evident at low engine speeds when combustion flame propagation is relatively slow. To prevent engine damage due to knock, the spark ignition timing of a gasoline engine is usually controlled by a knock sensor. Therefore, an engine's ignition timing cannot be set freely to achieve best engine performance and fuel economy. Whether ignition timings for a multi-cylinder engine are the same or can be set differently for each cylinder, it is not desirable for each cylinder has big deviation from the median with respect to knock tendency. It is apparent that effective measures to improve engine knock toughness should address both uniformity of all cylinders of a multi-cylinder engine and improvement of median knock toughness.
Technical Paper

In-Situ Fuel Concentration Measurement Near Spark Plug by 3.392 μm Infrared Absorption Method-Application to a Port Injected Lean-Burn Engine

2004-03-08
2004-01-1353
In this study, a spark plug sensor for in-situ fuel concentration measurement was applied to a port injected lean-burn engine. Laser infrared absorption method was employed and a 3.392 μm He-Ne laser that coincides with the absorption line of hydrocarbons was used as a light source. In this engine, the secondary valve lift height of intake system was controlled to obtain appropriate swirl and tumble flow in order to achieve lean-burn with the characteristics of intake flow. For such in-cylinder stratified mixture distribution, the fuel concentration near the spark plug is very important factor that affects the combustion characteristics. Therefore, the mixture formation process near the spark plug was investigated with changing fuel injection timing. Under the intake stroke, the timing that fuel passed through near the spark plug depended largely on the fuel injection timing.
Technical Paper

Improvement of Heat Resistance for Lean NOx Catalyst

2004-03-08
2004-01-1495
When the alkali metal-supported catalyst was treated at 830°C, the NOx conversion decreased because the alkali metals in the catalyst layer gradually moved to the cordierite honeycomb layer and reacted with the cordierite elements. This phenomena decreased to be added the basic metal oxide (α) in the catalyst layer. The improved catalyst with α 2 showed higher performance than the conventional catalyst in the model gas test. Moreover, the emission values of NOx, HC, and CO were 50% or less than Japanese domestic regulation values even after 830°C×60h heat treatment in a vehicle test.
Technical Paper

Improvement of Thermal Resistance for Lean NOx Catalyst

2003-03-03
2003-01-1166
A new type of lean NOx catalyst has been developed with improved thermal resistance. This lean NOx catalyst contains precious metals and NO2 adsorbents. The precious metals are used mainly for the oxidation reaction of NO, and the NO2 adsorbents are for the adsorption removal of generated NO2. The thermal resistance of the catalyst was raised by paying attention to the following points. 1) Improvement of thermal resistance for the NO oxidation activity by addition of a different precious metal element. 2) Prevention of thermal degradation of the NO2 adsorbent by addition of a new metal oxide. For item 1, Pd was added to the catalyst which had already included Pt. By having Pd coexist with Pt, the precious metal dispersion was kept high even after heat treatment, so the NO oxidizing ability was improved. For item 2, thermal degradation of NO2 adsorbent was prevented by addition of the new metal oxide (B) to the adsorbent.
Technical Paper

A New Variable Valve Engine Applying Shuttle Cam Mechanism

1992-02-01
920450
Variable-valve-actuation mechanism is considered to be one of the most suitable solutions to realize the compatibility between higher power output and performances in the practical speed range. A new variable-valve-actuation mechanism named “Shuttle Cam” was designed and studied. In this mechanism which was applied to a conventional motorcycle engine with rocker arms and gear-train-driven valve system, the cam gears move along the idler gear. And cam shafts simultaneously slide along the rocker-arm slipper surfaces which are concentric with the idler gear. Consequently valve lift varies continuously in accordance with the alteration in the rocker-arm lever ratio and the cam phasing changes simultaneously in accordance with the cam gear rotation. Result of the experiments has confirmed that the mechanism functions accurately even at high speeds up to 10,000 rpm and some improvements were achieved in power output, fuel consumption, idling quality, and exhaust-noise level.
Technical Paper

The Development of a High Fuel Economy and High Performance Four-Valve Lean Burn Engine

1992-02-01
920455
The reduction of fuel consumption is of great importance to automobile manufacturers. As a prospective means to achieve fuel economy, lean burn is being investigated at various research organizations and automobile manufacturers and a number of studies on lean-burn technology have been reported to this date. This paper describes the development of a four-valve lean-burn engine; especially the improvement of the combustion, the development of an engine management system, and the achievement of vehicle test results. Major themes discussed in this paper are (1) the improvement of brake-specific fuel consumption under partial load conditions and the achievement of high output power by adopting an optimized swirl ratio and a variable-swirl system with a specially designed variable valve timing and lift mechanism, (2) the development of an air-fuel ratio control system, (3) the improvement of fuel economy as a vehicle and (4) an approach to satisfy the NOx emission standard.
Technical Paper

Influence of a Fast Injection Rate Common Rail Injector for the Spray and Combustion Characteristics of Diesel Engine

2011-04-12
2011-01-0687
For reduction of NOx and soot emission with conventional diesel diffusion combustion, the authors focused on enhancement of the rate of injection (hereafter referred to as RoI) to improve air availability, thus enhancing the fuel distribution and atomization. In order to increase opening ramp of the RoI (hereafter referred to as fast injection rate), a hydraulic circuit was improved and nozzle geometries were optimized to make the greatest use of the advantages of the hydraulic circuit. Two different common rail injectors were prepared for this research. One is a mass production-type injector with piezo actuator that achieved the EURO-V exhaust gas emission standards, and the other is a prototype injector equipped with the new hydraulic circuit. The nozzle needle of the prototype injector is directly actuated by high-pressure fuel from common rail to improve the RoI.
Technical Paper

Research on Measurement and Simulation Technology of Valve Behavior during Engine Firing

2011-04-12
2011-01-0743
A measurement method for valve behavior during engine firing is established. In order to grasp valve behavior accurately, it has been required to develop a measurement method for valve behavior that takes in account for the condition during engine firing. However, behaviors of a valve train have generally been analyzed during engine motoring because it is difficult to measure them during engine firing. In this study, valve behavior during engine firing can be measured accurately by attaching a gap sensor to the valve guide. Furthermore, the simulation system for valve behavior that treated the valve train as three-dimensional flexible body is built. Under engine motoring condition, high correlation between measurement and simulation is confirmed for valve behavior and spring stress.
X