Refine Your Search

Topic

Search Results

Journal Article

Measurement of Diesel Spray Formation and Combustion upon Different Nozzle Geometry using Hybrid Imaging Technique

2014-04-01
2014-01-1410
High pressure diesel sprays were visualized under vaporizing and combusting conditions in a constant-volume combustion vessel. Near-simultaneous visualization of vapor and liquid phase fuel distribution were acquired using a hybrid shadowgraph/Mie-scattering imaging setup. This imaging technique used two pulsed LED's operating in an alternative manner to provide proper light sources for both shadowgraph and Mie scattering. In addition, combustion cases under the same ambient conditions were visualized through high-speed combustion luminosity measurement. Two single-hole diesel injectors with same nozzle diameters (100μm) but different k-factors (k0 and k1.5) were tested in this study. Detailed analysis based on spray penetration rate curves, rate of injection measurements, combustion indicators and 1D model comparison have been performed.
Journal Article

Durability Study of a High-Pressure Common-Rail Fuel Injection System Using Lubricity Additive-Dosed Gasoline-Like Fuel

2018-04-03
2018-01-0270
Experimental data and modeling work have shown that gasoline-like fuels can potentially be used to simultaneously achieve high efficiency and low pollutant emissions in compression ignition engines. Demonstrating that existing hardware systems are tolerant to these fuels is a key step in harnessing this potential. In this study, a 400-hour North Atlantic Treaty Organization (NATO) test cycle was used to assess the overall robustness of a Cummins XPI common-rail injection system operating with gasoline-like fuel. The cycle was designed to accelerate wear and identify any significant failure modes that could appear under normal operating conditions. Although prior work has investigated injection system durability with a wide variety of alternative fuels, this study uniquely focuses on a high-volatility, low-viscosity, gasoline-like fuel that has been dosed with lubricity additive.
Journal Article

Evaluation of Shot-to-Shot In-Nozzle Flow Variations in a Heavy-Duty Diesel Injector Using Real Nozzle Geometry

2018-04-03
2018-01-0303
Cyclic variability in internal combustion engines (ICEs) arises from multiple concurrent sources, many of which remain to be fully understood and controlled. This variability can, in turn, affect the behavior of the engine resulting in undesirable deviations from the expected operating conditions and performance. Shot-to-shot variation during the fuel injection process is strongly suspected of being a source of cyclic variability. This study focuses on the shot-to-shot variability of injector needle motion and its influence on the internal nozzle flow behavior using diesel fuel. High-speed x-ray imaging techniques have been used to extract high-resolution injector geometry images of the sac, orifices, and needle tip that allowed the true dynamics of the needle motion to emerge. These measurements showed high repeatability in the needle lift profile across multiple injection events, while the needle radial displacement was characterized by a much higher degree of randomness.
Technical Paper

Application of Signature Analysis and Operating Deflection Shapes to Identify Interior Noise Sources in an Excavator

2007-05-15
2007-01-2427
The objective of this study was to identify and gain an understanding of the origins of noise in a commercial excavator cab. This paper presents the results of two different tests that were used to characterize the vibration and acoustic characteristics of the excavator cab. The first test was done in an effort to characterize the vibration properties of the cab panels and their associated contribution to the noise level inside the cab. The second set, of tests, was designed to address the contribution of the external airborne noise produced by the engine and hydraulic pump to the overall interior noise. This paper describes the test procedures used to obtain the data for the signature analysis, operational deflection shapes (ODS), and sound diagnosis analysis. It also contains a discussion of the analysis results and an inside look into the possible contributors of key frequencies to the interior noise in the excavator cab.
Technical Paper

Evaluation of Injector Location and Nozzle Design in a Direct-Injection Hydrogen Research Engine

2008-06-23
2008-01-1785
The favorable physical properties of hydrogen (H2) make it an excellent alternative fuel for internal combustion (IC) engines and hence it is widely regarded as the energy carrier of the future. Hydrogen direct injection provides multiple degrees of freedom for engine optimization and influencing the in-cylinder combustion processes. This paper compares the results in the mixture formation and combustion behavior of a hydrogen direct-injected single-cylinder research engine using two different injector locations as well as various injector nozzle designs. For this study the research engine was equipped with a specially designed cylinder head that allows accommodating a hydrogen injector in a side location between the intake valves as well as in the center location adjacent to the spark plug.
Technical Paper

Optimization of an Asynchronous Fuel Injection System in Diesel Engines by Means of a Micro-Genetic Algorithm and an Adaptive Gradient Method

2008-04-14
2008-01-0925
Optimal fuel injection strategies are obtained with a micro-genetic algorithm and an adaptive gradient method for a nonroad, medium-speed DI diesel engine equipped with a multi-orifice, asynchronous fuel injection system. The gradient optimization utilizes a fast-converging backtracking algorithm and an adaptive cost function which is based on the penalty method, where the penalty coefficient is increased after every line search. The micro-genetic algorithm uses parameter combinations of the best two individuals in each generation until a local convergence is achieved, and then generates a random population to continue the global search. The optimizations have been performed for a two pulse fuel injection strategy where the optimization parameters are the injection timings and the nozzle orifice diameters.
Technical Paper

Valve Train Design for a New Gas Exchange Process

2004-03-08
2004-01-0607
The design and testing of the valve train for a new two-stroke diesel engine concept [1,2] is presented. The gas exchange of this process requires extremely fast-acting inlet valves, which constituted a very demanding designing task. A simulation model of the prototype valve train was constructed with commercially available software. The simulation program served as the main tool for optimizing the dynamic behavior of the valve train. The prototype valve train was built according to the simulations and valve acceleration measurements were performed in order to validate the simulation results. The simulations and measurements are presented in detail in this paper.
Technical Paper

Novel Two-Stroke Engine Concept, Feasibility Study

2003-10-27
2003-01-3211
A novel two-stroke engine concept is introduced. The cylinder scavenging takes place during the upward motion of the piston. The gas exchange valves are similar to typical four-stroke valves, but the intake valves are smaller and lighter. The scavenging air pressure is remarkably higher than in present-day engines. The high scavenging air pressure is produced by an external compressor. The two-stroke operation is achieved without the drawbacks of port scavenged engines. Moreover, the combustion circumstances, charge pressure and temperature and internal exhaust gas re-circulation (EGR) can be controlled by using valve timings. There is good potential for a substantial reduction in NOx emissions through the use of adjustable compression pressure and temperature and by using the adjustable amount of exhaust gas re-circulation.
Technical Paper

Simulation of Non-Evaporating Diesel Sprays and Verification with Experimental Data

2002-03-04
2002-01-0946
Non-evaporating diesel sprays have been simulated utilizing the ETAB and the WAVE atomization and breakup models and have been compared with experimental data. The experimental penetrations and widths were determined from back-lit spray images and the droplet sizes have been measured by means of a Malvern particle sizer. The model evaluation criteria include the spray penetration, the spray width and the local droplet size. The comparisons have been performed for variations of the injection pressure, the gas density and the fuel viscosity. The fuel nozzle exit velocities used in the simulations have been computed with a special code that considers the effect of in-nozzle cavitation. The simulations showed good overall agreement with experimental data. However, the capabilities of the models to predict the droplet size for different fuels could be improved.
Technical Paper

Modeling Ignition and Premixed Combustion Including Flame Stretch Effects

2017-03-28
2017-01-0553
Objective of this work is the incorporation of the flame stretch effects in an Eulerian-Lagrangian model for premixed SI combustion in order to describe ignition and flame propagation under highly inhomogeneous flow conditions. To this end, effects of energy transfer from electrical circuit and turbulent flame propagation were fully decoupled. The first ones are taken into account by Lagrangian particles whose main purpose is to generate an initial burned field in the computational domain. Turbulent flame development is instead considered only in the Eulerian gas phase for a better description of the local flow effects. To improve the model predictive capabilities, flame stretch effects were introduced in the turbulent combustion model by using formulations coming from the asymptotic theory and recently verified by means of DNS studies. Experiments carried out at Michigan Tech University in a pressurized, constant-volume vessel were used to validate the proposed approach.
Technical Paper

Carbureted SI Engine Air Flow Measurements

2016-04-05
2016-01-1082
Measurement of internal combustion engine air flow is challenging due to the required modification of the intake system and subsequent change in the air flow pattern. In this paper, various surge tank volumes were investigated to improve the accuracy of measuring air flow rate into a 674-cm3, four-stroke, liquid-cooled, internal combustion engine. According to the experimental results, when the venturi meter is used to measure the intake air flow rate, an air surge tank is required to be installed downstream of the venturi to smoothen the air flow. Moreover, test results revealed that increasing air surge tank volume beyond a limit could have a negative effect on the engine performance parameters especially in carbureted engines where controlling AFR is difficult. Although the air flow rate into the engine changed with increasing tank volume, the air-fuel ratio was leaner for smaller tank volumes.
Technical Paper

Study of the Portability of a 3D CFD Model for the Dynamics of Sprays Issuing from Multi-Hole GDI Injectors

2011-08-30
2011-01-1897
Three high pressure multi-hole GDI injectors, one manufactured by Continental, two manufactured by Bosch, are experimentally characterized under various injection strategies in terms of instantaneous mass flow rate and fuel dispersion. Spray visualization within an optically accessible pressure vessel allows the measurement of the single jet cone angle and penetration length. A portable numerical model for the issuing spray dynamics is developed within the AVL Fire code, exploiting a log-normal distribution for the initial droplets diameter, whose expected value and variance are properly defined as a function of the main physical parameters. Tuning of the entering constants is realized by means of an automatic optimization procedure. An example of application of the spray model within a 3D simulation of the in-cylinder process of a GDI engine is presented. Effects of splitting injection into two successive events are discussed.
Technical Paper

Investigation of Diesel Liquid Spray Penetration Fluctuations under Vaporizing Conditions

2012-04-16
2012-01-0455
Diesel combustion and emissions formation is largely spray and mixing controlled and hence understanding spray parameters, specifically vaporization, is key to determine the impact of fuel injector operation and nozzle design on combustion and emissions. In this study, an eight-hole common rail piezoelectric injector was tested in an optically accessible constant volume combustion vessel at charge gas conditions typical of full load boosted engine operation. Liquid penetration of the eight sprays was determined via processing of images acquired from Mie back scattering under vaporizing conditions by injecting into a charge gas at elevated temperature with 0% oxygen. Conditions investigated included a charge temperature sweep of 800 to 1300 K and injection pressure sweep of 1034 to 2000 bar at a constant charge density of 34.8 kg/m₃.
Technical Paper

Near Nozzle Diesel Spray Modeling and X-Ray Measurements

2006-04-03
2006-01-1390
In this paper the KH-RT and the CAB droplet breakup models are analyzed. The focus is on near nozzle spray simulation data that will be qualitatively compared with results obtained from x-ray experiments. Furthermore, the suitability of the x-ray method for spray studies is assessed and its importance for droplet breakup modeling is discussed. The simulations have been carried out with the Kiva3VRel2 CFD-code into which the KH-RT- and the CAB- droplet breakup models have been implemented. Since the x-ray method gives an integrated line-of-sight mass distribution of the spray, a suitable comparison of the experimental distributions and the simulated ones is made. Additionally, modeling aspects are discussed and the functioning of the models demonstrated by illustrating how the parcel Weber numbers and radii vary spatially. The transient nature of the phenomenon is highlighted and the influence of the breakup model parameters is discussed.
Technical Paper

Influence of the Nozzle Geometry of a Diesel Single-Hole Injector on Liquid and Vapor Phase Distributions at Engine-Like Conditions

2013-09-08
2013-24-0038
The paper describes an experimental activity on the spatial and temporal liquid- and vapor-phase distributions of diesel fuel at engine-like conditions. The influence of the k-factor (0 and 1.5) of a single-hole axial-disposed injector (0.100 mm diameter and 10 L/d ratio) has been studied by spraying fuel in an optically-accessible constant-volume combustion vessel. A high-speed imaging system, capable of acquiring Mie-scattering and Schlieren images in a near simultaneous fashion mode along the same line of sight, has been developed at the Michigan Technological University using a high-speed camera and a pulsed-wave LED system. The time resolved pair of schlieren and Mie-scattering images identifies the instantaneous position of both the vapor and liquid phases of the fuel spray, respectively. The studies have been performed at three injection pressures (70, 120 and 180 MPa), 23.9 kg/m3 ambient gas density and 900 K gas temperature in the vessel.
Technical Paper

Development of a Micro-Engine Testing System

2012-10-23
2012-32-0105
A test stand was developed to evaluate an 11.5 cc, two-stroke, internal combustion engine in anticipation of future combustion system modifications. Detailed engine testing and analysis often requires complex, specialized, and expensive equipment, which can be problematic for research budgets. This problem is compounded by the fact that testing “micro” engines involves low flow rates, high rotational speeds, and compact dimensions which demand high-accuracy, high-speed, and compact measurement systems. On a limited budget, the task of developing a micro-engine testing system for advanced development appears quite challenging, but with careful component selection it can be accomplished. The anticipated engine investigation includes performance testing, fuel system calibration, and combustion analysis. To complete this testing, a custom test system was developed.
Technical Paper

Vibrational and Sound Radiation Properties of a Double Layered Diesel Engine Gear Cover

1999-05-17
1999-01-1773
The introduction of a thin fluid layer between two layers of sheet metal offers a highly effective and economical alternative to the use of constrained viscoelastic damping layers in sheet metal structures. A diesel engine gear cover, which is constructed of two sheet metal sections spot welded together, takes advantage of fluid layer damping to produce superior vibration and sound radiation performance. In this paper, the bending of a double layered plate coupled through a thin fluid layer is modeled using a traveling wave approach which results in a impedance function that can be used to assess the vibration and sound radiation performance of practical double layered plate structures. Guided by this model, the influence of fluid layer thickness and inside-to-outside sheet thickness is studied.
Technical Paper

Influence of Elevated Injector Temperature on the Spray Characteristics of GDI Sprays

2019-04-02
2019-01-0268
When fuel at elevated temperatures is injected into an ambient environment at a pressure lower than the saturation pressure of the fuel, the fuel vaporizes in the nozzle and/or immediately upon exiting the nozzle; that is, it undergoes flash boiling. It is characterized by a two-phase flow regime co-located with primary breakup, which significantly affects the spray characteristics. Under flash boiling conditions, the near nozzle spray angle increases, which can lead to shorter penetration because of increased entrainment. In a multi-hole injector this can cause other impacts downstream resulting from the increased plume to plume interactions. To study the effect of injector temperature and injection pressure with real fuels, an experimental investigation of the spray characteristics of a summer grade gasoline fuel with 10% ethanol (E10) was conducted in an optically accessible constant volume spray vessel.
Technical Paper

The Impact of Pre-Chamber Design on Part Load Efficiency and Emissions of a Miller Cycle Light Duty Gasoline Engine

2021-04-06
2021-01-0479
The efficiency and emission potential of pre-chamber combustion in a Miller cycle light duty gasoline engine operated under part load was evaluated. Several pre-chamber designs that examine the engine performance tradeoffs with nozzle diameter, pre-chamber volume, number of nozzles, and pre-chamber fuel enrichment were investigated for both excess air and cooled external EGR dilution strategies. The introduction of pre-chamber jet ignition was observed to significantly reduce the main-chamber combustion duration while reducing cyclic variability under dilute conditions, benefiting from the long-reach ignition jets and enhanced turbulence. However, the pre-chamber design that provided the fastest combustion led to reduced brake efficiency primarily due to increased wall heat loss. Maintaining the total nozzle area while increasing the number of nozzles was identified as a means to minimize the additional heat loss and maintain fast burn rates.
Technical Paper

Investigation of the Impact of Impingement Distance on Momentum Flux Rate of Injection Measurements of a Diesel Injector

2015-04-14
2015-01-0933
Diesel combustion and emissions is largely spray and mixing controlled. Spray and combustion models enable characterization over a range of conditions to understand optimum combustion strategies. The validity of models depends on the inputs, including the rate of injection profile of the injector. One method to measure the rate of injection is to measure the momentum, where the injected fuel spray is directed onto a force transducer which provides measurements of momentum flux. From this the mass flow rate is calculated. In this study, the impact of impingement distance, the distance from injector nozzle exit to the anvil connected to the force transducer, is characterized over a range of 2 - 12 mm. This characterization includes the impact of the distance on the momentum flux signal in both magnitude and shape. At longer impingement distances, it is hypothesized that a peak in momentum could occur due to increasing velocity of fuel injected as the pintle fully opens.
X