Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

Study on Fatigue Behaviors of Porous T300/924 Carbon Fiber Reinforced Polymer Unidirectional Laminates

2017-03-28
2017-01-0223
Morphological features of voids were characterized for T300/924 12-ply and 16-ply composite laminates at different porosity levels through the implementation of a digital microscopy (DM) image analysis technique. The composite laminates were fabricated through compression molding. Compression pressures of 0.1MPa, 0.3MPa, and 0.5MPa were selected to obtain composite plaques at different porosity levels. Tension-tension fatigue tests at load ratio R=0.1 for composite laminates at different void levels were conducted, and the dynamic stiffness degradation during the tests was monitored. Fatigue mechanisms were then discussed based on scanning electron microscope (SEM) images of the fatigue fracture surfaces. The test results showed that the presence of voids in the matrix has detrimental effects on the fatigue resistance of the material, depending on the applied load level.
Journal Article

High Strain Rate Mechanical Characterization of Carbon Fiber Reinforced Polymer Composites Using Digital Image Correlations

2017-03-28
2017-01-0230
The introduction of carbon fiber reinforced polymer (CFRP) composites to structural components in lightweight automotive structures necessitates an assessment to evaluate that their crashworthiness dynamic response provides similar or higher levels of safety compared to conventional metallic structures. In order to develop, integrate and implement predictive computational models for CFRP composites that link the materials design, molding process and final performance requirements to enable optimal design and manufacturing vehicle systems for this study, the dynamic mechanical response of unidirectional (UD) and 2x2 twill weave CRFP composites was characterized at deformation rates applicable to crashworthiness performance. Non-standardized specimen geometries were tested on a standard uniaxial frame and an intermediate-to-high speed dynamic testing frame, equipped with high speed cameras for 3D digital image correlation (DIC).
Journal Article

Finite Element Simulation of Compression Molding of Woven Fabric Carbon Fiber/Epoxy Composites: Part I Material Model Development

2016-04-05
2016-01-0498
Woven fabric carbon fiber/epoxy composites made through compression molding are one of the promising choices of material for the vehicle light-weighting strategy. Previous studies have shown that the processing conditions can have substantial influence on the performance of this type of the material. Therefore the optimization of the compression molding process is of great importance to the manufacturing practice. An efficient way to achieve the optimized design of this process would be through conducting finite element (FE) simulations of compression molding for woven fabric carbon fiber/epoxy composites. However, performing such simulation remains a challenging task for FE as multiple types of physics are involved during the compression molding process, including the epoxy resin curing and the complex mechanical behavior of woven fabric structure.
Technical Paper

An Analysis of the Effects of Ventilation on Burn Patterns Resulting from Passenger Compartment Interior Fires

2020-04-14
2020-01-0923
Vehicle fire investigators often use the existence of burn patterns, along with the amount and location of fire damage, to determine the fire origin and its cause. The purpose of this paper is to study the effects of ventilation location on the interior burn patterns and burn damage of passenger compartment fires. Four similar Ford Fusion vehicles were burned. The fire origin and first material ignited were the same for all four vehicles. In each test, a different door window was down for the duration of the burn test. Each vehicle was allowed to burn until the windshield, back glass, or another window, other than the window used for ventilation, failed, thus changing the ventilation pattern. At that point, the fire was extinguished. Temperatures were measured at various locations in the passenger compartment. Video recordings and still photography were collected at all phases of the study.
Journal Article

Optimized Engine Accessory Drive Resulting in Vehicle FE Improvement

2008-04-01
2008-01-2761
A belt driven Front End Accessory Drive (FEAD) is used to efficiently supply power to accessory components on automotive engines. The total energy absorbed by the FEAD consists of the accessory component requirements, the belt deformation and friction losses as well as the bearing losses. The accessory component torque requirements provide accessory function such as air conditioning, fluid pumping and electrical power generation. Alternatively, belt related torque losses are a significant parasitic loss, since they do not contribute any useful work. This paper will explain the source of energy loss in FEADs and outline a comprehensive strategy to reduce it. Test results comparing the effect of reduced friction on fuel consumption will be presented as well.
Journal Article

A Component Test Methodology for Simulation of Full-Vehicle Side Impact Dummy Abdomen Responses for Door Trim Evaluation

2011-04-12
2011-01-1097
Described in this paper is a component test methodology to evaluate the door trim armrest performance in an Insurance Institute for Highway Safety (IIHS) side impact test and to predict the SID-IIs abdomen injury metrics (rib deflection, deflection rate and V*C). The test methodology consisted of a sub-assembly of two SID-IIs abdomen ribs with spine box, mounted on a linear bearing and allowed to translate in the direction of impact. The spine box with the assembly of two abdominal ribs was rigidly attached to the sliding test fixture, and is stationary at the start of the test. The door trim armrest was mounted on the impactor, which was prescribed the door velocity profile obtained from full-vehicle test. The location and orientation of the armrest relative to the dummy abdomen ribs was maintained the same as in the full-vehicle test.
Technical Paper

Influence of Weld Lines on the Mechanical Properties of Talc Filled Polypropylene

2020-04-14
2020-01-1306
Weld lines can significantly reduce ultimate tensile strength (UTS) and fracture strain of talc filled polypropylene (PP). In this paper, two different injection molding tests were completed. First, an injection mold with triangular inserts was built to study the influence of meeting angles on material properties at the weld line region. Tensile samples were cut at different locations along the weld line on the injection molded plaques. The test results showed that both UTS and fracture strain increase when the sample locations are away from the insert. This trend is attributed to different meeting angles. Second, standard ISO tensile bars with and without weld line were injection molded to identify the size of the weld line affected zone. A FEA model was built in ABAQUS, where the tensile sample was divided into two different regions, the solid region and the weld line affected region.
Technical Paper

Buzz Avoidance on Sunroof Light Sunshades: Design and Validation

2020-01-13
2019-36-0148
Sunroof is placed in certain high-end vehicles to give user a better driving experience. All automakers are searching alternatives to reduce weight and cost in the vehicle, in which sunroofs are also impacted. Some alternatives are already applied, as a honeycomb paper used in some sunshades that presents benefits, as less weight and with a good cost reduction. Although, due the reduced weight for this part produced in this material, it shows more susceptibility to reproduce the vibration that vehicle propagates in movement, especially in bad condition roads. The sunroof assembly is dependent of the roof reinforcement and roof skin, but in this special case, the validation could be done in the components itself because the interaction of the sunshades is directly dependent of the other sunroof parts, as rails and front frame.
Technical Paper

Implementation, Improvement and Statistical Validation of Scoring by Milling Process on an Instrument Panel with In-Mold Grain Lamination

2020-01-13
2019-36-0155
This paper starts describing the in-mold grain lamination and bilaminated film cover when applied to instrument panels with seamless passenger air bag doors. It then offers a comparison between two different PAB door weakening processes, the laser scoring and the scoring by milling. It further discuss the scoring by milling process and analyses its implementation on a real case instrument panel. In the implementation case, the scoring pattern is checked against a pre-defined engineering specification and correlated to the results of a drop tower test, which shows the force necessary to break the PAB door. Three iterations are performed until the results for scoring pattern and breaking force are achieved. The breaking force results are then statistically validated against the specification and capability analysis.
Technical Paper

Rattle Evaluation: Sunroof Glass Against Roof Flange

2020-01-13
2019-36-0140
Sunroof is installed in the vehicles to generate a better satisfaction for customer. Normally, the glass is maintained closed or fully opened, when the user would like to exterior air to get in. The glass runs in the sunroof rail that interacts directly with the roof skin and the roof reinforcement, where the whole sunroof structure is fixed. In general, sunroofs are equipped with two stages button, were the final or second stage, more used by users, allows the glass to move until the final position directly, without stops. Even though, the first stage could move the glass according user desire. For validation, the vehicle runs in several roads in order to capture any unusual response given by the sunroof. During specific test validation created, the glass was been positioned in the critical region that by design has the minimum distance against the roof flange.
Technical Paper

Robustness Design to Avoid Noise on Exterior Handle System

2020-01-13
2019-36-0137
Squeak and rattle are two undesirable occurrences during component operation and during vehicle driving condition, resulting in one of the top complains from costumers. One common grievance could happen during the user exterior handle operation and during side door closing. The exterior handle system during the operation could generate a squeak between interface parts, if materials and geometric tolerances was not been carefully designed. Also, vibration generated during door closing effort, might generate squeak between parts since the reinforcement for exterior handle touches the outer sheet metal internally. For this reason several guidelines might be included to avoid potential noise condition for this system during vehicle lifetime as correct material reduce friction between parts, taking into consideration the geometric condition between parts. Plus, coupling system on handles two pieces should also be evaluated to avoid squeak during use.
Technical Paper

THE EFFECT OF BIODIESEL ON THE ELECTRICAL PROPERTIES OF AUTOMOTIVE ELASTOMERIC COMPOUNDS

2020-01-13
2019-36-0327
The lack of electrical conductivity on materials, which are used in automotive fuel systems, can lead to electrostatic charges buildup in the components of such systems. This accumulation of energy can reach levels that exceed their capacity to withstand voltage surges, which considerably increases the risk of electrical discharges or sparks. Another important factor to consider is the conductivity of the commercially available fuels, such as biodiesel, which contributes to dissipate these charges to a proper grounding point in automobiles. From 2013, the diesel regulation in Brazil have changed and the levels of sulfur in the composition of diesel were reduced considerably, changing its natural characteristic of promoting electrostatic discharges, becoming more insulating.
Technical Paper

Recent Advances in Swelling Resistance of Graphene-Based Rubber Compounds

2020-04-14
2020-01-0769
Recently, graphene has attracted both academic and industrial interest because it can produce a dramatic improvement in properties at very low filler content. This review will focus on the latest studies and recent progress in the swelling resistance of rubber compounds due to the addition of graphene and its derivatives. This work will present the state-of-the-art in this subject area and will highlight the advantages and current limitations of the use of graphene for potential future researches.
Technical Paper

Root Cause Identification and Methods of Reducing Rear Window Buffeting Noise

2007-05-15
2007-01-2402
Rear Window Buffeting (RWB) is the low-frequency, high amplitude, sound that occurs in many 4-door vehicles when driven 30-70 mph with one rear window lowered. The goal of this paper is to demonstrate that the mechanisms of RWB are similar to that of sun roof buffeting and to describe the results of several actions suspected in contributing to the severity of RWB. Finally, the results of several experiments are discussed that may lend insight into ways to reduce the severity of this event. A detailed examination of the side airflow patterns of a small Sport Utility Vehicle (SUV) shows these criteria exist on a small SUV, and experiments to modify the SUV airflow pattern to reduce RWB are performed with varying degrees of success. Based on the results of these experiments, design actions are recommended that may result in the reduction of RWB.
Technical Paper

Objective chime sound quality evaluation

2006-11-21
2006-01-2667
Customer perception of vehicle quality and safety is based on many factors. One important factor is the customers impression of the sounds produced by body and interior components such as doors, windows, seats, safety belts, windshield wipers, and other similar items like sounds generated automatically for safety and warning purposes. These sounds are typically harmonic or constant, and the relative level of perception, duration, multiplicity, and degree of concurrence of these sounds are elements that the customer will retain in an overall quality impression. Chime sounds are important to the customer in order to alert that something is not accomplished in a right way or for safe purposes. The chimes can be characterized by: sound level perception, frequency of the signal, shape of the signal, duration of the “beep” and the silence duration.
Technical Paper

A Parametric Approach for Vehicle Frame Structure Dynamics Analysis

2007-05-15
2007-01-2335
The capability to drive NVH quality into vehicle frame design is often compromised by the lack of available predictive tools that can be developed and applied within the timeframe during which key architectural design decisions are required. To address this need, a new parametric frame modeling approach was developed and is presented in this paper. This fully parameterized model is capable of fast modal, static stiffness & weight assessments, as well as DSA/optimization for frame design changes. This tool has been proven to be effective in improving speed, quality and impact of NVH hardware decisions.
Technical Paper

Design for Assembly: An AHP Approach for Automotive Front End Component Design Evaluation

2007-04-16
2007-01-0522
Design for assembly (DFA) is a prominent strategy for manufacturing cost reduction in automotive industries. DFA in automotive component design is a complicated process since several competing targets have to be considered simultaneously in designing various functions and features. It requires specialized design knowledge as well as extensive quantitative analysis, comparison and evaluation. Analytical Hierarchic Process (AHP) is one of the tools that can assist such design and evaluation processes. It has been successfully applied in various processes when multiple competing goals and characteristics are involved. In this paper, we propose the application of AHP for DFA in automotive component design and present a case study involving car front end component design.
Technical Paper

Integration of Chassis Frame Forming Analysis into Performance Models to More Accurately Evaluate Crashworthiness

1998-02-23
980551
For Body on Frame vehicles, the chassis truck frame absorbs approximately 70% of the kinetic energy created from a frontal impact. Traditional performance analysis of the chassis utilizes standardized material properties for the Finite Element (FE) Model. These steel properties do not reflect any strain hardening effects that occur during the forming process. This paper proposes a process that integrates the frame side rail forming analysis results into the FE crash model. The process was implemented on one platform at Ford Motor Company to quantify the effects. The forming analysis provided material thinout, yield strength, and tensile strength which were input into the performance model. With the modified properties, the frame deceleration pulse and buckling mode exhibited different characteristics. The integration of CAE disciplines is the next step in increasing the predictability of analytical tools.
Technical Paper

Chassis System Integration Approach for Vehicle High Mileage NVH Robustness

1998-02-23
980903
High mileage NVH performance is one of the major concerns in vehicle design for long term customer satisfaction. Elastomeric bushings and brake rotors are key chassis components which tend to degrade as vehicle mileage accumulates with time. The degradation of these components normally causes the overall degradation of vehicle NVH performance. In the current paper two categories of problems are addressed respectively: road-induced vibration due to bushing degradation, and brake roughness due to rotor wear. A system integration approach is used to derive the design strategies that can potentially make the vehicle more robust in these two NVH attributes. The approach links together bushing degradation characteristics, brake rotor wear characteristics, the design of experiment (DOE) method, and CAE modeling in a systematic fashion. The concept and method are demonstrated using a production vehicle.
Technical Paper

Design and Development of 25% Post-Industrial Recycled SMC Hood Assembly for the 1998 Lincoln Continental Program

1998-02-23
981019
This paper describes the process of incorporation of 25% post-industrial recycled sheet molded composite (SMC) material in the 1998 Continental Hood inner. 1998 Continental Hood assembly consists of traditional SMC outer and this recycled hood inner along with three small steel reinforcements. BUDD Plastics collects SMC scraps from their manufacturing plants. The scrap is then processed and made into fillers for production of SMC. Strength of SMC comes from glass fibers and fillers are added to produce the final mix of raw materials. This recycled material is approximately 10% lighter and less stiff than the conventional virgin SMC. This presented unique challenges to the product development team to incorporate this material into a production vehicle in order to obtain the desired goal of reducing land fill and improving the environment.
X