Refine Your Search

Topic

Author

Search Results

Journal Article

Uncertainty Assessment in Restraint System Optimization for Occupants of Tactical Vehicles

2016-04-05
2016-01-0316
We have recently obtained experimental data and used them to develop computational models to quantify occupant impact responses and injury risks for military vehicles during frontal crashes. The number of experimental tests and model runs are however, relatively small due to their high cost. While this is true across the auto industry, it is particularly critical for the Army and other government agencies operating under tight budget constraints. In this study we investigate through statistical simulations how the injury risk varies if a large number of experimental tests were conducted. We show that the injury risk distribution is skewed to the right implying that, although most physical tests result in a small injury risk, there are occasional physical tests for which the injury risk is extremely large. We compute the probabilities of such events and use them to identify optimum design conditions to minimize such probabilities.
Journal Article

An Exploration of Jute-Polyester Composite for Vehicle Head Impact Safety Countermeasures

2018-04-03
2018-01-0844
Natural fiber-reinforced composites are currently gaining increasing attention as potential substitutes to pervasive synthetic fiber-reinforced composites, particularly glass fiber-reinforced plastics (GFRP). The advantages of the former category of composites include (a) being conducive to occupational health and safety during fabrication of parts as well as handling as compared to GFRP, (b) economy especially when compared to carbon fiber-reinforced composites (CFRC), (c) biodegradability of fibers, and (d) aesthetic appeal. Jute fibers are especially relevant in this context as jute fabric has a consistent supply base with reliable mechanical properties. Recent studies have shown that components such as tubes and plates made of jute-polyester (JP) composites can have competitive performance under impact loading when compared with similar GFRP-based structures.
Technical Paper

An Optimization Study of Occupant Restraint System for Different BMI Senior Women Protection in Frontal Impacts

2020-04-14
2020-01-0981
Accident statistics have shown that older and obese occupants are less adaptable to existing vehicle occupant restraint systems than ordinary middle-aged male occupants, and tend to have higher injury risk in vehicle crashes. However, the current research on injury mechanism of aging and obese occupants in vehicle frontal impacts is scarce. This paper focuses on the optimization design method of occupant restraint system parameters for specific body type characteristics. Three parameters, namely the force limit value of the force limiter in the seat belt, pretensioner preload of the seat belt and the proportionality coefficient of mass flow rate of the inflator were used for optimization. The objective was to minimize the injury risk probability subjected to constraints of occupant injury indicator values for various body regions as specified in US-NCAP frontal impact tests requirements.
Journal Article

HIC(d) and Its Relation With Headform Rotational Acceleration in Vehicle Upper Interior Head Impact Safety Assessment

2008-04-14
2008-01-0186
Upper interior head impact safety is an important consideration in vehicle design and is covered under FMVSS 201. This standard generally requires that HIC(d) should not exceed 1000 when a legitimate target in the upper interior of a vehicle is impacted with a featureless Hybrid III headform at a velocity of 15 mph (6.7 m/s). As HIC and therefore HIC(d) is based on translational deceleration experienced at the CG of a test headform, its applicability is often doubted in protection against injury that can be caused due to rotational acceleration of head during impact. A study is carried out here using an improved lumped parameter model (LPM) representing headform impact for cases in which moderate to significant headform rotation may be present primarily due to the geometric configuration of targets.
Journal Article

Jaw Loading Response of Current ATDs

2009-04-20
2009-01-0388
Biomechanical surrogates are used in various forms to study head impact response in automotive applications and for assessing helmet performance. Surrogate headforms include those from the National Operating Committee on Standards for Athletic Equipment (NOCSAE) and the many variants of the Hybrid III. However, the response of these surrogates to loading at the chin and how that response may affect the loads transferred from the jaw to the rest of the head are unknown. To address part of that question, the current study compares the chin impact response performance of select human surrogates to that of the cadaver. A selection of Hybrid III and NOCSAE based surrogates with fixed and articulating jaws were tested under drop mass impact conditions that were used to describe post mortem human subject (PMHS) response to impacts at the chin (Craig et al., 2008). Results were compared to the PMHS response with cumulative variance technique (Rhule et al., 2002).
Journal Article

A Component Test Methodology for Simulation of Full-Vehicle Side Impact Dummy Abdomen Responses for Door Trim Evaluation

2011-04-12
2011-01-1097
Described in this paper is a component test methodology to evaluate the door trim armrest performance in an Insurance Institute for Highway Safety (IIHS) side impact test and to predict the SID-IIs abdomen injury metrics (rib deflection, deflection rate and V*C). The test methodology consisted of a sub-assembly of two SID-IIs abdomen ribs with spine box, mounted on a linear bearing and allowed to translate in the direction of impact. The spine box with the assembly of two abdominal ribs was rigidly attached to the sliding test fixture, and is stationary at the start of the test. The door trim armrest was mounted on the impactor, which was prescribed the door velocity profile obtained from full-vehicle test. The location and orientation of the armrest relative to the dummy abdomen ribs was maintained the same as in the full-vehicle test.
Technical Paper

Biomechanical Investigation of Thoracolumbar Spine Fractures in Indianapolis-type Racing Car Drivers during Frontal Impacts

2006-12-05
2006-01-3633
The purpose of this study is to provide an understanding of driver kinematics, injury mechanisms and spinal loads causing thoracolumbar spinal fractures in Indianapolis-type racing car drivers. Crash reports from 1996 to 2006, showed a total of forty spine fracture incidents with the thoracolumbar region being the most frequently injured (n=15). Seven of the thoracolumbar fracture cases occurred in the frontal direction and were a higher injury severity as compared to rear impact cases. The present study focuses on thoracolumbar spine fractures in Indianapolis-type racing car drivers during frontal impacts and was performed using driver medical records, crash reports, video, still photographic images, chassis accelerations from on-board data recorders and the analysis tool MADYMO to simulate crashes. A 50th percentile, male, Hybrid III dummy model was used to represent the driver.
Technical Paper

Reliability-Based Robust Design Optimization Using the EDR Method

2007-04-16
2007-01-0550
This paper attempts to integrate a derivative-free probability analysis method to Reliability-Based Robust Design Optimization (RBRDO). The Eigenvector Dimension Reduction (EDR) method is used for the probability analysis method. It has been demonstrated that the EDR method is more accurate and efficient than the Second-Order Reliability Method (SORM) for reliability and quality assessment. Moreover, it can simultaneously evaluate both reliability and quality without any extra expense. Two practical engineering problems (vehicle side impact and layered bonding plates) are used to demonstrate the effectiveness of the EDR method.
Technical Paper

A Severe Ankle and Foot Injury in Frontal Crashes and Its Mechanism

1998-11-02
983145
In a frontal automotive crash, the driver's foot is usually stepping on the brake pedal as an instinctive response to avoid a collision. The tensile force generated in the Achilles tendon produces a compressive preload on the tibia. If there is intrusion of the toe board after the crash, an additional external force is applied to the driver's foot. A series of dynamic impact tests using human cadaveric specimens was conducted to investigate the combined effect of muscle preloading and external force. A constant tendon force was applied to the calcaneus while an external impact force was applied to the forefoot by a rigid pendulum. Preloading the tibia significantly increased the tibial axial force and the combination of these forces resulted in five tibial pylon fractures out of sixteen specimens.
Technical Paper

Occupant Compartment Updates for Side to Side Vibration in a Fuel Funny Car

2008-12-02
2008-01-2969
Nitro Fuel Funny cars have 7-8,000 hp and travel 330 mph in a quarter mile. These cars experience extreme forces in normal operation. One phenomenon familiar to drag racers is tire shake. Mild cases can cause loss of traction and vision. Extreme cases can cause injury or death. In March of 2007, a study and subsequent revision of the passenger compartment in a Fuel Funny car was performed after a fatal accident due to extreme tire shake. Tire shake on a drag race car normally occurs when the force on the rear tire causes the tire to roll over itself causing a loss of traction and side-to-side vibration. In other cases, if the tire fails at high speed, the tire may partially separate, causing an extreme vibration in the cockpit of the car. The vibration may set up a harmonic in the chassis, which is transferred to the driver since the rear end is bolted directly to the chassis with no suspension to absorb the energy.
Technical Paper

Lightweighting of an Automotive Front End Structure Considering Frontal NCAP and Pedestrian Lower Leg Impact Safety Requirements

2016-04-05
2016-01-1520
The present work is concerned with the objective of design optimization of an automotive front end structure meeting both occupant and pedestrian safety requirements. The main goal adopted here is minimizing the mass of the front end structure meeting the safety requirements without sacrificing the performance targets. The front end structure should be sufficiently stiff to protect the occupant by absorbing the impact energy generated during a high speed frontal collision and at the same time it should not induce unduly high impact loads during a low speed pedestrian collision. These two requirements are potentially in conflict with each other; however, there may exist an optimum design solution, in terms of mass of front end structure, that meets both the requirements.
Technical Paper

Development of Bicycle Carrier for Bicyclist Pre-Collision System Evaluation

2016-04-05
2016-01-1446
According to the U.S. National Highway Traffic Safety Administration, 743 pedal cyclists were killed and 48,000 were injured in motor vehicle crashes in 2013. As a novel active safety equipment to mitigate bicyclist crashes, bicyclist Pre-Collision Systems (PCSs) are being developed by many vehicle manufacturers. Therefore, developing equipment for evaluating bicyclist PCS is essential. This paper describes the development of a bicycle carrier for carrying the surrogate bicyclist in bicyclist PCS testing. An analysis on the United States national crash databases and videos from TASI 110 car naturalistic driving database was conducted to determine a set of most common crash scenarios, the motion speed and profile of bicycles. The bicycle carrier was designed to carry or pull the surrogate bicyclist for bicycle PCS evaluation. The carrier is a platform with a 4 wheel differential driving system.
Technical Paper

Driver Behavior in Forward Collision and Lane Departure Scenarios

2016-04-05
2016-01-1455
In 2010, 32,855 fatalities and over 2.2 million injuries occurred in automobile crashes, not to mention the immense economic impact on our society. Two of the four most frequent types of crashes are rear-end and lane departure crashes. In 2011, rear-end crashes accounted for approximately 28% of all crashes while lane departure crashes accounted for approximately 9%. This paper documents a study on the NADS-1 driving simulator to support the development of driver behavior modeling. Good models of driver behavior will support the development of algorithms that can detect normal and abnormal behavior, as well as warning systems that can issue useful alerts to the driver. Several scenario events were designed to fill gaps in previous crash research. For example, previous studies at NADS focused on crash events in which the driver was severely distracted immediately before the event. The events in this study included a sample of undistracted drivers.
Technical Paper

A Methodology for Prediction of Periprosthetic Injuries in Occupants with TKR Implants in Vehicle Crashes

2016-04-05
2016-01-1529
Periprosthetic fractures refer to the fractures that occur in the vicinity of the implants of joint replacement arthroplasty. Most of the fractures during an automotive frontal collision involve the long bones of the lower limbs (femur and tibia). Since the prevalence of persons living with lower limb joint prostheses is increasing, periprosthetic fractures that occur during vehicular accidents are likely to become a considerable burden on health care systems. It is estimated that approximately 4.0 million adults in the U.S. currently live with Total Knee Replacement (TKR) implants. Therefore, it is essential to study the injury patterns that occur in the long bone of a lower limb containing a total knee prosthesis. The aim of the present study is to develop an advanced finite element model that simulates the possible fracture patterns that are likely during vehicular accidents involving occupants who have knee joint prostheses in situ.
Technical Paper

Comparison of Front Passenger Hybrid III 5th Percentile Female Nij Response in 35mph Flat Rigid Barrier Test with Linear & Pitching Sled

2016-04-05
2016-01-1527
The introduction of a revised New Car Assessment Program (NCAP) frontal crash test in the US has been challenging due to more stringent Anthropomorphic Test Device (ATD) rating metrics such as neck injury (Nij). These ATD responses in full vehicle tests may be under-predicted with conventional linear sleds because they are not capable of reproducing the pitching effect seen in some vehicle tests. The primary objective of this study was to confirm the effects of pitching sled on front passenger 5th %ile female ATD Nij response by comparing prototype vehicle test to pitching sled and linear sled tests. A second objective was to confirm that newly introduced pitching sled with enhanced pitching capability was able to reproduce similar vehicle kinematics when compared to a baseline vehicle test.
Technical Paper

On the Development of a New Design Methodology for Vehicle Crashworthiness based on Data Mining Theory

2016-04-05
2016-01-1524
This paper represents the development of a new design methodology based on data mining theory for decision making in vehicle crashworthy components (or parts) development. The new methodology allows exploring the big crash simulation dataset to discover the underlying complicated relationships between vehicle crash responses and design variables at multi-levels, and deriving design rules based on the whole vehicle safety requirements to make decisions towards the component and sub-component level design. The method to be developed will resolve the issue of existing design approaches for vehicle crashworthiness, i.e. limited information exploring capability from big datasets, which may hamper the decision making and lead to a nonoptimal design. A preliminary design case study is presented to demonstrate the performance of the new method. This method will have direct impacts on improving vehicle safety design and can readily be applied to other complex systems.
Technical Paper

Effect of Boot Compliance in Numerical Model of Hybrid III in Vertical Loading

2016-04-05
2016-01-1525
Numerical models of Hybrid III had been widely used to study the effect of underbody blast loading on lower extremities. These models had been primarily validated for automotive loading conditions of shorter magnitude in longer time span which are different than typical blast loading conditions of higher magnitude of shorter duration. Therefore, additional strain rate dependent material models were used to validate lower extremity of LSTC Hybrid III model for such loading conditions. Current study focuses on analyzing the mitigating effect of combat boots in injury responses with the help of validated LSTC Hybrid III model. Numerical simulations were run for various impactor speeds using validated LSTC Hybrid III model without any boot (bare foot) and with combat boot.
Technical Paper

Research on the FE Modeling and Impact Injury of Obese 10-YO Children Based on Mesh Morphing Methodology

2018-04-03
2018-01-0540
In order to improve the comprehensive protection for children with variable shapes and sizes, this paper conducted studies on the impact injury for obese children based on a 10-YO finite element model. Some specific geometrics on the body surface were firstly acquired by the combination of pediatric anthropometric database and generator of body (GEBOD). A Radial Basis Function (RBF) based mesh morphing technique was then used to modify the original standard size FE model using the obtained geometrics. The morphed FE model was validated based on the experimental data of frontal sled test and chest-abdomen impact test. The effects of obesity on injury performances were analyzed through simplified high-speed and low-speed crash simulations.
Technical Paper

Latency Analysis for Inter-Vehicle Communications

2006-04-03
2006-01-1330
The study done by the U.S. National Highway Traffic Safety Administration (NHTSA) shows that developing automotive collision warning and avoidance systems will be very effective in order to significantly reduce fatalities, injuries and associated costs. In order to develop an automotive collision warning and avoidance system, it will be necessary that the vehicles should be able to exchange (in real-time) their dynamic information such as speed, acceleration, direction, relative position, status of some devices like brake, steering wheel, gas pedal, etc. The only feasible way to exchange the vehicles’ dynamic information will be through the use of wireless communication technology. However, the wireless link setup time and communication latencies should be under certain bounds so that the vehicles can appropriately react on time to avoid collisions. This paper will present results from an experimental setup that simulates inter-vehicle communications.
Technical Paper

Race Car Nets for the Control of Neck Forces in Side Impacts

2004-11-30
2004-01-3513
Race car nets have been used for years to keep the drivers head and arms inside the structure of the race car during an accident. Recent testing by GM Racing has shown that a net placed near the driver's shoulder and head on the right side can significantly reduce head excursion and thereby reduce neck tension in a side impact. The reduced neck tension prevents neck injury and basilar skull fracture. The right side net also improves seat stiffness and reduces seat deflection in side impacts.
X