Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

Developing Abrasion Test Standards for Evaluating Lunar Construction Materials

2009-07-12
2009-01-2377
Operational issues encountered by Apollo astronauts relating to lunar dust were catalogued, including material abrasion that resulted in scratches and wear on spacesuit components, ultimately impacting visibility, joint mobility and pressure retention. Standard methods are being developed to measure abrasive wear on candidate construction materials to be used for spacesuits, spacecraft, and robotics. Calibration tests were conducted using a standard diamond stylus scratch tip on the common spacecraft structure aluminum, Al 6061-T6. Custom tips were fabricated from terrestrial counterparts of lunar minerals for scratching Al 6061-T6 and comparing to standard diamond scratches. Considerations are offered for how to apply standards when selecting materials and developing dust mitigation strategies for lunar architecture elements.
Journal Article

Ice Crystal Icing Engine Testing in the NASA Glenn Research Center's Propulsion Systems Laboratory: Altitude Investigation

2015-06-15
2015-01-2156
The National Aeronautics and Space Administration (NASA) conducted a full scale ice crystal icing turbofan engine test using an obsolete Allied Signal ALF502-R5 engine in the Propulsion Systems Laboratory (PSL) at NASA Glenn Research Center. The test article used was the exact engine that experienced a loss of power event after the ingestion of ice crystals while operating at high altitude during a 1997 Honeywell flight test campaign investigating the turbofan engine ice crystal icing phenomena. The test plan included test points conducted at the known flight test campaign field event pressure altitude and at various pressure altitudes ranging from low to high throughout the engine operating envelope. The test article experienced a loss of power event at each of the altitudes tested.
Journal Article

Distillation-based Droplet Modeling of Non-Ideal Oxygenated Gasoline Blends: Investigating the Role of Droplet Evaporation on PM Emissions

2017-03-28
2017-01-0581
In some studies, a relationship has been observed between increasing ethanol content in gasoline and increased particulate matter (PM) emissions from vehicles equipped with spark ignition engines. The fundamental cause of the PM increase seen for moderate ethanol concentrations is not well understood. Ethanol features a greater heat of vaporization (HOV) than gasoline and also influences vaporization by altering the liquid and vapor composition throughout the distillation process. A droplet vaporization model was developed to explore ethanol’s effect on the evaporation of aromatic compounds known to be PM precursors. The evolving droplet composition is modeled as a distillation process, with non-ideal interactions between oxygenates and hydrocarbons accounted for using UNIFAC group contribution theory. Predicted composition and distillation curves were validated by experiments.
Technical Paper

Vehicle Velocity Prediction Using Artificial Neural Network and Effect of Real World Signals on Prediction Window

2020-04-14
2020-01-0729
Prediction of vehicle velocity is important since it can realize improvements in the fuel economy/energy efficiency, drivability, and safety. Velocity prediction has been addressed in many publications. Several references considered deterministic and stochastic approaches such as Markov chain, autoregressive models, and artificial neural networks. There are numerous new sensor and signal technologies like vehicle-to-vehicle and vehicle-to-infrastructure communication that can be used to obtain inclusive datasets. Using these inclusive datasets of sensors in deep neural networks, high accuracy velocity predictions can be achieved. This research builds upon previous findings that Long Short-Term Memory (LSTM) deep neural networks provide low error velocity prediction. We developed an LSTM deep neural network that uses different groups of datasets collected in Fort Collins, Colorado.
Technical Paper

As-Assembled Suspension Geometry Measurement using Photogrammetry

2006-12-05
2006-01-3618
A measurement system based on photogrammetry has been developed and used to measure the “as-assembled” geometry of a variety of racecar suspensions. A standard methodology for photographing a suspension, and special targets have been developed to use with commercially available photogrammetry software. Several types of targets are discussed; these included targets to identify the center of rotation of the linkages and the orientation of the wheel mounting surface. The system is used with a 5.1 mega-pixel camera to measure the 3D geometry of a suspension in space. Physical camber and toe variation in bump is then measured and correlated with the numerical computation of camber and toe variation using a suspension kinematics package and the geometry generated using the technique.
Technical Paper

The CEV Smart Buyer Team Effort: A Summary of the Crew Module & Service Module Thermal Design Architecture

2007-07-09
2007-01-3046
The NASA-wide CEV Smart Buyer Team (SBT) was assembled in January 2006 and was tasked with the development of a NASA in-house design for the CEV Crew Module (CM), Service Module (SM), and Launch Abort System (LAS). This effort drew upon over 250 engineers from all of the 10 NASA Centers. In 6 weeks, this in-house design was developed. The Thermal Systems Team was responsible for the definition of the active and passive design architecture. The SBT effort for Thermal Systems can be best characterized as a design architecting activity. Proof-of-concepts were assessed through system-level trade studies and analyses using simplified modeling. This nimble design approach permitted definition of a point design and assessing its design robustness in a timely fashion. This paper will describe the architecting process and present trade studies and proposed thermal designs
Technical Paper

Weathering of Thermal Control Coatings

2007-07-09
2007-01-3020
Spacecraft radiators reject heat to their surroundings. Radiators can be deployable or mounted on the body of the spacecraft. NASA's Crew Exploration Vehicle is to use body mounted radiators. Coatings play an important role in heat rejection. The coatings provide the radiator surface with the desired optical properties of low solar absorptance and high infrared emittance. These specialized surfaces are applied to the radiator panel in a number of ways, including conventional spraying, plasma spraying, or as an appliqué. Not specifically designed for a weathering environment, little is known about the durability of conventional paints, coatings, and appliqués upon exposure to weathering and subsequent exposure to solar wind and ultraviolet radiation exposure. In addition to maintaining their desired optical properties, the coatings must also continue to adhere to the underlying radiator panel.
Technical Paper

Innovative Multi-Environment, Multimode Thermal Control System

2007-07-09
2007-01-3202
Innovative multi-environment multimode thermal management architecture has been described that is capable of meeting widely varying thermal control requirements of various exploration mission scenarios currently under consideration. The proposed system is capable of operating in a single-phase or two-phase mode rejecting heat to the colder environment, operating in a two-phase mode with heat pump for rejecting heat to a warm environment, as well as using evaporative phase-change cooling for the mission phases where the radiator is incapable of rejecting the required heat. A single fluid loop can be used internal and external to the spacecraft for the acquisition, transport and rejection of heat by the selection of a working fluid that meets NASA safety requirements. Such a system may not be optimal for each individual mode of operation but its ability to function in multiple modes may permit global optimization of the thermal control system.
Technical Paper

Review of Role of Icing Feathers in Ice Accretion Formation

2007-09-24
2007-01-3294
This paper presents a review of our current experimental and theoretical understanding of icing feathers and the role that they play in the formation of ice accretions. It covers the following areas: a short review of past research work related to icing feathers; a discussion of the physical characteristics and terminology used in describing icing feathers; the presence of feathers on ice accretions formed in unswept airfoils, especially at SLD conditions; the role that icing feathers play in the formation of ice accretion shapes on swept wings; the formation of icing feathers from roughness elements; theoretical considerations regarding feather formation, feather interaction to form complex icing structures, the role of film dynamics in the formation of roughness elements and the formation of feathers. Hypotheses related to feather formation and feather growth are discussed.
Technical Paper

Parametric Study of Ice Accretion Formation on a Swept Wing at SLD Conditions

2007-09-24
2007-01-3345
An experiment was conducted in the Icing Research Tunnel (IRT) at NASA Glenn Research Center to study the effect of sweep angle and temperature on the formation of ice accretions on a NACA 0012 swept wing at SLD conditions. From a baseline Appendix-C condition with a MVD of 20m the drop size was changed to 110 and 200m for the SLD cases. Casting data, ice shape tracings, time-sequence and photographic data were obtained. Time-sequence photography was taken during each run to capture in real time the formation of the ice accretion. Measurements of the critical distance were obtained.
Technical Paper

A Step Towards CO2-Neutral Aviation

2007-09-17
2007-01-3790
An approximation method for evaluation of the caloric equations used in combustion chemistry simulations is described. The method is applied to generate the equations of specific heat, static enthalpy, and Gibb's free energy for fuel mixtures of interest to gas turbine engine manufacturers. Liquid-phase fuel properties are also derived. The fuels include JP-8, synthetic fuel, and two fuel blends consisting of a mixture of JP-8 and synthetic fuel. The complete set of fuel property equations for both phases are implemented into a computational fluid dynamics (CFD) flow solver database, and multi-phase, reacting flow simulations of a well-tested liquid-fueled combustor are performed. The simulations are a first step in understanding combustion system performance and operational issues when using alternate fuels, at practical engine operating conditions.
Technical Paper

Development of a Diesel Particulate Filter Burner Control System for Active Trap Regeneration

2007-04-16
2007-01-1064
This paper outlines the development of a diesel fuel burner for Diesel Particulate Filter (DPF) regeneration. The burner utilizes the application of a dual featured ignition system that may enable a burner system to be more cost effective, reliable, and efficient than other burners or Diesel Oxidation Catalysts (DOC). The ignition system incorporates high-energy ignition and ion sensing into a single controller. These two features provide many benefits for burner applications. The high-energy ignition provides enhanced light-off characteristics while simultaneously cleaning the electrode surfaces. Ion sensing allows precise flame control through high-speed ignition and flameout feedback. Initial data has already confirmed many of these anticipated benefits.
Technical Paper

Testing of an R134a Spray Evaporative Heat Sink

2008-06-29
2008-01-2165
The NASA Glenn Research Center has been developing a spacecraft open loop spray evaporative heat sink for use in pressure environments near sea-level, where evaporative cooling of water is not effective. The working fluid is R134a, a common refrigerant used in household appliances, considered safe and non-toxic for humans. The concept uses an open loop spray of R134a impinging on a heated flat plate, through which a closed loop of hot coolant flows, having acquired the heat from spacecraft electronics boxes, the cabin heat exchanger, and other heat sources. The latent heat of evaporation cools the outside of the hot plate, and through heat conduction, reduces the temperature of the coolant. The testing at NASA Glenn has used an electrically heated cylindrical copper target to simulate the hot plate. This paper will discuss the R134a feed system, the test matrix, and test results.
Technical Paper

Determining the Effect of Material Properties on Operating Temperatures of Fiber Reinforced Internal Combustion Engine Poppet Valves

2008-12-02
2008-01-2946
Internal combustion engine poppet valves operate in extreme conditions. These extreme conditions are a result of the high temperatures in the combustion chamber. Especially in Motorsport applications, the high temperatures have led to the development of exotic metallic alloys that can operate in this environment. One key problem in developing materials for poppet valves is that it is necessary to know the temperature at which they operate. This is increasingly important when developing valves from alternative materials such as fiber reinforced composites. Composite engine valves have the potential to produce substantial increases in engine performance, through substantial weight reductions, if they can be designed to withstand the environment. Research to-date has demonstrated the functionality of fiber reinforced composite intake valves that are significantly lighter than metallic valves; however, composite valve surface temperatures seem higher than expected.
Technical Paper

Development of Icing Condition Remote Sensing Systems and their Implications for Future Flight Operations

2003-06-16
2003-01-2096
NASA and the FAA are funding the development of ground-based remote sensing systems specifically designed to detect and quantify the icing environment aloft. The goal of the NASA activity is to develop a relatively low cost stand-alone system that can provide practical icing information to the flight community. The goal of the FAA activity is to develop more advanced systems that can identify supercooled large drop (SLD) as well as general icing conditions and be integrated into the existing weather information infrastructure. Both activities utilize combinations of sensing technologies including radar, radiometry, and lidar, along with Internet-available external information such as numerical weather model output where it is found to be useful. In all cases the measured data of environment parameters will need to be converted into a measure of icing hazard before it will be of value to the flying community.
Technical Paper

Results and Analysis from Reduced Gravity Experiments of the Flexible Membrane Commode Apparatus

2009-07-12
2009-01-2344
Two separate experimental rigs used in tests on NASA and Zero-G Corporation aircrafts flying low-gravity trajectories, and in the NASA 2.2 Second Drop Tower have been developed to test the functioning of the Flexible Membrane Commode (FMC) concept under reduced gravity conditions. The first rig incorporates the flexible, optically opaque membrane bag and the second rig incorporates a transparent chamber with a funnel assembly for evacuation that approximates the size of the membrane bag. Different waste dispensers have been used including a caulking gun and flexible hose assembly, and an injection syringe. Waste separation mechanisms include a pair of wire cutters, an iris mechanism, as well as discrete slug injection. The experimental work is described in a companion paper. This paper focuses on the obtained results and analysis of the data.
Technical Paper

NASA's In-Flight Education and Training Aids for Pilots and Operators

2003-06-16
2003-01-2142
To support NASA's goal to improve aviation safety, the Aircraft Icing Project of the Aviation Safety Program has developed a number of education and training aids for pilots and operators on the hazards of atmospheric icing. A review of aircraft incident and accident investigations has revealed that flight crews have not always understood the effects of ice contamination on their aircraft. To increase this awareness, NASA has partnered with regulatory agencies and pilot trade organizations to assure relevant and practical materials that are focused toward the intended pilot audience. A number of new instructional design approaches and media delivery methods have been introduced to increase the effectiveness of the training materials by enhancing the learning experience, expanding user interactivity and participation, and, hopefully, increasing learner retention rates.
Technical Paper

SLD Research in the UK

2003-06-16
2003-01-2128
This paper reviews work conducted in the UK aimed at developing validated methods to simulate ice accretion formed in super-cooled large droplet (SLD) icing conditions. To date, QinetiQ has completed one theoretical and three experimental programmes of work. Two further studies are currently in progress within UK universities. This paper provides results from the third test conducted by QinetiQ and NASA in the GKN Aerospace Composite Technologies Icing Research Wind Tunnel, Luton UK, to measure the mass loss through droplet splash during an SLD encounter. A description of the test procedures and the results obtained are provided. Future work on SLD methods development in progress in the UK is then briefly outlined.
Technical Paper

Optimization of a Direct-Injected 2-Stroke Cycle Snowmobile

2003-09-16
2003-32-0074
A student design team at Colorado State University (CSU) has developed an innovative snowmobile to compete in the Clean Snowmobile Challenge 2003 competition. This engine concept was originally developed for the CSC 2002 competition and demonstrated the lowest emissions of any engine that competed that year. The team utilized a 3-cylinder, 594cc, loop-scavenged, two-stroke cycle engine (Arctic Cat ZRT600) and then modified the engine to operate with direct in-cylinder fuel injection using the Orbital OCP air-assisted fuel injection system. This conversion required that the team design and cast new heads for the engine. The direct-injection approach reduced carbon monoxide (CO) emissions by 70% and total hydrocarbon (THC) emissions by 90% from a representative stock snowmobile. An oxidation catalyst was then used to oxidize the remaining CO and THC.
Technical Paper

The Heavy-Duty Gasoline Engine - An Alternative to Meet Emissions Standards of Tomorrow

2004-03-08
2004-01-0984
A technology path has been identified for development of a high efficiency, durable, gasoline engine, targeted at achieving performance and emissions levels necessary to meet heavy-duty, on-road standards of the foreseeable future. Initial experimental and numerical results for the proposed technology concept are presented. This work summarizes internal research efforts conducted at Southwest Research Institute. An alternative combustion system has been numerically and experimentally examined. The engine utilizes gasoline as the fuel, with a combination of enabling technologies to provide high efficiency operation at ultra-low emissions levels. The concept is based upon very highly-dilute combustion of gasoline at high compression ratio and boost levels. Results from the experimental program have demonstrated engine-out NOx emissions of 0.06 g/hp/hr, at single-cylinder brake thermal efficiencies (BTE) above thirty-four percent.
X