Refine Your Search

Topic

Author

Search Results

Journal Article

Analysis of Residual Stress Profiles in the Cylinder Web Region of an As-Cast V6 Al Engine Block with Cast-In Fe Liners Using Neutron Diffraction

2011-04-12
2011-01-0036
Continuous efforts to develop a lightweight alloy suitable for the most demanding applications in automotive industry resulted in a number of advanced aluminum (Al) and magnesium alloys and manufacturing routes. One example of this is the application of 319 Al alloy for production of 3.6L V6 gasoline engine blocks. Aluminum is sand cast around Fe-liner cylinder inserts, prior to undergoing the T7 heat treatment process. One of the critical factors determining the quality of the final product is the type, level, and profile of residual stresses along the Fe liners (or extent of liner distortion) that are always present in a cast component. In this study, neutron diffraction was used to characterize residual stresses along the Al and the Fe liners in the web region of the cast engine block. The strains were measured both in Al and Fe in hoop, radial, and axial orientations. The stresses were subsequently determined using generalized Hooke's law.
Journal Article

Reduction of Hot Tears: Alloy and Casting Process Optimization Using Neutron Diffraction

2010-04-12
2010-01-0748
The continued need of vehicle weight reduction provides impetus for research into the development of novel automotive casting alloys and their processing technologies. Where possible, ferrous components are being replaced by aluminum (Al) and magnesium (Mg) alloy counterparts. This transition, however, requires a systematic optimization of the alloys and their manufacturing processes to enable production of defect-free castings. In this context, prevention of hot tears remains a challenge for Al and Mg alloy thin-wall castings. Hot tears form in semi-solid alloy subjected to localized tensile stress. Classical methods of stress measurement present numerous experimental limitations. In this research, neutron diffraction (ND) was used as a novel tool to obtain stress maps of castings and to quantify the effect of two processes used to eliminate hot tears in permanent mold castings: 1) increasing of the mold temperature during casting of Mg alloys, and 2) grain refinement of Al alloys.
Journal Article

Heavy-Duty Vehicle Rear-View Camera Systems

2014-09-30
2014-01-2381
Transport Canada, through its ecoTECHNOLOGY for Vehicles program, retained the services of the National Research Council Canada to undertake a test program to examine the operational and human factors considerations concerning the removal of the side mirrors on a Class 8 tractor equipped with a 53 foot dry van semi-trailer. Full scale aerodynamic testing was performed in a 2 m by 3 m wind tunnel on a system component basis to quantify the possible fuel savings associated with the removal of the side mirrors. The mirrors on a Volvo VN780 tractor were removed and replaced with a prototype camera-based indirect vision system consisting of four cameras mounted in the front fender location; two cameras on either side of the vehicle. Four monitors mounted in the vehicle - two mounted on the right A-pillar and two mounted on the left A-pillar - provided indirect vision information to the vehicle operator.
Journal Article

Residual Stress Mapping along the Cylinder Bores of Al Alloy Engine Blocks Subjected to Production Solution Heat Treatment Schedule

2014-04-01
2014-01-0837
The development of an optimized heat treatment schedule, with the aim of maximizing strength and relieving tensile residual stress, is important to prevent in-service cylinder distortion in Al alloy engine blocks containing cast-in gray iron liners. However, to effectively optimize the engine block heat treatment schedule, the current solutionizing parameters must be analyzed and compared to the as-cast condition to establish a baseline for residual stress relief. In this study, neutron diffraction was carried out to measure the residual stress along the aluminum cylinder bridge following solution heat treatment. The stresses were measured in the hoop, radial and axial orientations and compared to a previous measured as-cast (TSR) engine block. The results suggest that solution heat treatment using the current production parameters partially relieved tensile residual stress in the Al cylinder bridge, with stress relief being more effective near the bottom of the cylinder.
Journal Article

Measurement of the On-Road Turbulence Environment Experienced by Heavy Duty Vehicles

2014-09-30
2014-01-2451
Terrestrial winds play an important role in affecting the aerodynamics of road vehicles. Of increasing importance is the effect of the unsteady turbulence structure of these winds and their influence on the process of optimizing aerodynamic performance to reduce fuel consumption. In an effort to predict better the aerodynamic performance of heavy-duty vehicles and various drag reduction technologies, a study was undertaken to measure the turbulent wind characteristics experienced by heavy-duty vehicles on the road. To measure the winds experienced on the road, a sport utility vehicle (SUV) was outfitted with an array of four fast-response pressure probes that could be arranged in vertical or horizontal rake configurations that provided measurements up to 4.0 m from the ground and spanning a width of 2.4 m. To characterize the influence of the proximity of the vehicle on the pressure signals of the probes, the SUV and its measurements system was calibrated in a large wind tunnel.
Technical Paper

Impact of Lateral Alignment on the Energy Savings of a Truck Platoon

2020-04-14
2020-01-0594
A truck platooning system was tested using two heavy-duty tractor-trailer trucks on a closed test track to investigate the sensitivity of intentional lateral offsets over a range of intervehicle spacings. The fuel consumption for both trucks in the platoon was measured using the SAE J1321 gravimetric procedure while travelling at 65 mph and loaded to a gross weight of 65,000 lb. In addition, the SAE J1939 instantaneous fuel rate was calibrated against the gravimetric measurements and used as proxy for additional analyses. The testing campaign demonstrated the effects of intervehicle gaps, following-vehicle longitudinal control, and manual lateral control. The new results are compared to previous truck-platooning studies to reinforce the value of the new information and demonstrate similarity to past trends. Fuel savings for the following vehicle was observed to exceed 10% at closer following distances.
Technical Paper

LiDAR and Camera-Based Convolutional Neural Network Detection for Autonomous Driving

2020-04-14
2020-01-0136
Autonomous vehicles are currently a subject of great interest and there is heavy research on creating and improving algorithms for detecting objects in their vicinity. A ROS-based deep learning approach has been developed to detect objects using point cloud data. With encoded raw light detection and ranging (LiDAR) and camera data, several basic statistics such as elevation and density are generated. The system leverages a simple and fast convolutional neural network (CNN) solution for object identification and localization classification and generation of a bounding box to detect vehicles, pedestrians and cyclists was developed. The system is implemented on an Nvidia Jetson TX2 embedded computing platform, the classification and location of the objects are determined by the neural network. Coordinates and other properties of the object are published on to various ROS topics which are then serviced by visualization and data handling routines.
Technical Paper

An Experimental Study on the Effect of Exhaust Gas Recirculation on a Natural Gas-Diesel Dual-Fuel Engine

2020-04-14
2020-01-0310
Natural gas (NG)-diesel dual-fuel combustion can be a suitable solution to reduce the overall CO2 emissions of heavy-duty vehicles using diesel engines. One configuration of such a dual-fuel engine can be port injection of NG to form a combustible air-NG mixture in the cylinder. This mixture is then ignited by a direct injection of diesel. Other potential advantages of such an engine include the flexibility of switching back to diesel-only mode, reduced hardware development costs and lower soot emissions. However, the trade-off is lower brake thermal efficiency (BTE) and higher hydrocarbon emissions, especially methane, at low load and/or high engine speed conditions. Advancing the diesel injection timing tends to improve the BTE but may cause the NOx emissions to increase.
Technical Paper

LiDAR Based Classification Optimization of Localization Policies of Autonomous Vehicles

2020-04-14
2020-01-1028
People through many years of experience, have developed a great intuitive sense for navigation and spatial awareness. With this intuition people are able to apply a near rules based approach to their driving. With a transition to autonomous driving, these intuitive skills need to be taught to the system which makes perception is the most fundamental and critical task. One of the major challenges for autonomous vehicles is accurately knowing the position of the vehicle relative to the world frame. Currently, this is achieved by utilizing expensive sensors such as a differential GPS which provides centimeter accuracy, or by using computationally taxing algorithms to attempt to match live input data from LiDARs or cameras to previously recorded data or maps. Within this paper an algorithm and accompanying hardware stack is proposed to reduce the computational load on the localization of the robot relative to a prior map.
Journal Article

CAM-Based Planning, Programming and Execution of Large-Scale Machining Operations by a Robot-Mounted Gantry System

2011-10-18
2011-01-2651
This paper examines issues related to planning, programming and execution of machining operations by a robot in the context of machining large parts with complex geometries by a gantry-mounted robotic system. Parts were created from surface data in a CAD/CAM environment. The same environment was used to generate tool paths using a conventional machine tool approach. These paths were converted to robot trajectories and validated using mathematical kinematic models of the robotic system. Validation was performed according to various criteria related to process performance. Associated robot programs were then automatically generated. The manufacturing cell was progressively integrated according to requirements resulting from iterative process characterization. A metrology-based calibration procedure was designed that considerably improved the system's positioning precision.
Journal Article

Characterization of the Ultrafine and Black Carbon Emissions from Different Aviation Alternative Fuels

2015-09-15
2015-01-2562
This study reports gaseous and particle (ultrafine and black carbon (BC)) emissions from a turbofan engine core on standard Jet A-1 and three alternative fuels, including 100% hydrothermolysis synthetic kerosene with aromatics (CH-SKA), 50% Hydro-processed Esters and Fatty Acid paraffinic kerosene (HEFA-SPK), and 100% Fischer Tropsch (FT-SPK). Gaseous emissions from this engine for various fuels were similar but significant differences in particle emissions were observed. During the idle condition, it was observed that the non-refractory mass fraction in the emitted particles were higher than during higher engine load condition. This observation is consistent for all test fuels. The 100% CH-SKA fuel was found to have noticeable reductions in BC emissions when compared to Jet A-1 by 28-38% by different BC instruments (and 7% in refractory particle number (PN) emissions) at take-off condition.
Technical Paper

Effects of Cetane Enhancing Additives and Ignition Quality on Diesel Engine Emissions

1997-10-01
972968
The effects of cetane number and the cetane enhancing additives on diesel exhaust emissions were investigated on a single cylinder DI research engine. The engine used in this study incorporates the features of contemporary medium-to-heavy duty diesel engines and is tuned to US EPA 1994 emission standards. The engine experiments were run using the AVL 8-mode steady-state simulation of the U.S. EPA heavy-duty transient test procedure. The experimental fuels included diesel fuels obtained from different sources with various natural cetane ratings as well as a number of fuels blended by adding two cetane improvers into three base fuels. The two cetane improvers we used were a nitrate-type additive and a peroxide-type additive. Increasing the cetane number resulted in a general decrease in NOx emissions. Similar reductions in NOx emissions were observed with increasing cetane number for all the base fuels irrespective of the cetane improver used in the fuel.
Technical Paper

Comparison of the Exhaust Emissions of Diesel Fuels Derived from Oil Sands and Conventional Crude Oil

1998-10-19
982487
The effects of fuel properties of both oil-sands-derived and conventional-crude-oil-derived diesel fuels were investigated on a single-cylinder DI research engine. The engine used in this study incorporated features of contemporary medium- to heavy-duty diesel engines and was tuned to the U.S. EPA 1994 emission standards. The engine experiments were run using the AVL 8-mode steady-state simulation of the U.S. EPA heavy-duty transient test procedure. The experimental fuels included 12 fuels blended using refinery streams to have controlled total aromatic levels and 7 other diesel fuels obtained from different sources. The results showed that at a constant cetane number (44) and sulfur content (150 ppm), oil-sands-derived fuels produced similar NOx emissions as their conventional-crude-oil-derived counterparts and total aromatic content and fuel density could be used in a regression model to predict NOx emissions.
Technical Paper

Influence of Engine Speed on HCCI Combustion Characteristics using Dual-Stage Autoignition Fuels

2009-04-20
2009-01-1107
Homogeneous Charge Compression Ignition (HCCI) combustion characteristics of dual-stage autoignition fuels were examined over the speed range of 600 to 1700 rpm using a Cooperative Fuels Research (CFR) engine. A fuel vaporizer was used to preheat and partially vaporize the fuel inside the intake plenum. The air and fuel were well-mixed prior to entering the cylinder. Since low temperature heat release (LTHR) is known to be an important factor that affects HCCI combustion of fuels that exhibit dual-stage autoignition behavior, a detailed heat release analyses were performed on both time and crank angle bases. At the lower and upper speeds, the operating ranges were compared as a function of air/fuel ratio (AFR) and exhaust gas recirculation (EGR) from the knocking to misfiring limits. The AFR-EGR operating region was more limited at 1700 rpm than at 900 rpm for the commercial ULSD fuel. Combustion stability was problematic at higher engine speeds.
Technical Paper

Effects of Cetane Number, Aromatic Content and 90% Distillation Temperature on HCCI Combustion of Diesel Fuels

2010-10-25
2010-01-2168
The effects of cetane number, aromatics content and 90% distillation temperature (T90) on HCCI combustion were investigated using a fuel matrix designed by the Fuels for Advanced Combustion Engines (FACE) Working Group of the Coordinating Research Council (CRC). The experiments were conducted in a single-cylinder, variable compression ratio, Cooperative Fuel Research (CFR) engine. The fuels were atomized and partially vaporized in the intake manifold. The engine was operated at a relative air/fuel ratio of 1.2, 60% exhaust gas recirculation (EGR) and 900 rpm. The compression ratio was varied over the range of 9:1 to 15:1 to optimize the combustion phasing for each fuel, keeping other operating parameters constant. The results show that cetane number and T90 distillation temperature significantly affected the combustion phasing. Cetane number was clearly found to have the strongest effect.
Technical Paper

Optimization of Casting Parameters on an Improved AA6061 Aluminum Alloy for Semi-Solid Die Casting

2010-04-12
2010-01-0225
A study was conducted to assess the performance and castability of a new AA6061 aluminum alloy variant specially designed for semi-solid pressure die casting. The AA6061 alloy has very desirable mechanical properties for the fabrication of automotive parts. However, it has limited castability due to its low silicon content. It is not well suited for shape casting processes which are, for their part, very interesting in terms of production costs for complex-shaped automotive components. In an effort to meet automotive industry requirements, new AA6061 alloy variants have been developed by Rio Tinto Alcan researchers over the past years, aiming to improve the castability of the alloy while maintaining its desirable mechanical properties, by increasing its die-filling capacity, decreasing its hot tearing tendency. The study described herein is an example of how the performance of a single variant was assessed in terms of castability. The full study was conducted on six separate variants.
Technical Paper

Emissions from Heavy-Duty Diesel Engine with EGR using Fuels Derived from Oil Sands and Conventional Crude

2003-10-27
2003-01-3144
The exhaust emissions from a single-cylinder version of a heavy-duty diesel engine with exhaust gas recirculation (EGR) were studied using 12 diesel fuels derived from oil sands and conventional sources. The test fuels were blended from 22 refinery streams to produce four fuels (two from each source) at three different total aromatic levels (10, 20, and 30% by mass). The cetane numbers were held constant at 43. Exhaust emissions were measured using the AVL eight-mode steady-state test procedure. PM emissions were accurately modeled by a single regression equation with two predictors, total aromatics and sulphur content. Sulphate emissions were found to be independent of the type of sulphur compound in the fuel. NOx emissions were accurately modeled by a single regression equation with total aromatics and density as predictor variables. PM and NOx emissions were significantly significantly affected by fuel properties, but crude oil source did not play a role.
Technical Paper

Advanced Real-time Aerodynamic Model Identification Technique

2001-09-11
2001-01-2965
The Flight Research Laboratory (FRL), National Research Council (NRC) of Canada is currently developing an in-flight aircraft aerodynamic model identification technique that determines the small perturbation model at a given test condition. Initial demonstrations have been carried out using the NRC Falcon 20 research aircraft. An efficient system architecture, in terms of both software algorithms and hardware processing, has been designed to meet the stringent near real-time requirements of an in-flight system. As well, novel hardware and software techniques are being applied to the calibration and measurement of the fundamental in-flight parameters, such as air data. The small perturbation models are then combined to develop a global model of the aircraft that is validated by comparing the model response to flight data. The maneuvers were performed according to the FAA Acceptance Test Guide (ATG).
Technical Paper

Diesel Spray Structure Investigation by Laser Diffraction and Sheet Illumination

1992-02-01
920577
Intermittent and highly transient dense diesel sprays were investigated using laser diffraction and laser sheet illumination techniques to decipher the internal spray structure. Through careful experimental design, the unperturbed structure of the dense core region of a transient full cone diesel spray was observed for the first time. Diffraction measurements showed that larger droplets exist at the spray periphery and the Sauter mean diameter decreases from the periphery to the spray centerline. The results from both laser diffraction and 2-D imaging are inconsistent with the existence of an intact liquid core extending to a few hundred nozzle diameters. The intermittent and highly transient nature of diesel sprays ensures rapid and complete atomization within no more than twenty nozzle diameters.
Technical Paper

Potential for the Accumulation of Ice and Snow for a Boat-Tail Equipped Heavy-Duty Vehicle

2016-09-27
2016-01-8141
With increasing use of boat-tails on Canadian roads, a concern had been raised regarding the possibility for ice and snow to accumulate and shed from the cavity of a boat-tail affixed to a dry-van trailer, posing a hazard for other road users. This paper describes a preliminary evaluation of the potential for ice and snow accumulation in the cavity of a boat-tail-equipped heavy-duty vehicle. A transient CFD approach was used and combined with a quasi-static particle-tracking simulation to evaluate, firstly, the tendency of various representative ice or snow particles to be entrained in the vehicle wake, and secondly, the potential of such particles to accumulate on the aft end of a dry-van trailer with and without various boat-tail configurations. Results of the particle tracking analyses showed that the greatest numbers of particles impinge on the base of the trailer for the no-boat-tail case, concentrated on the upper surface of the back face of the trailer.
X