Refine Your Search

Topic

Search Results

Journal Article

Fracture Behavior of Typical Structural Adhesive Joints Under Quasi-Static and Cyclic Loadings

2010-04-12
2010-01-0969
Structural adhesive joints are expected to retain integrity in their entire service-life that normally involves cyclic loading concurrent with environmental exposure. Under such a severe working condition, effective determination of fatigue life at different temperatures is crucial for reliable joint design. The main goal of this work was thus defined as evaluation of fatigue performance of adhesive joints at their extreme working temperatures in order to be compared with their fracture properties under static loading. A series of standard double-cantilever-beam (DCB) specimens have been bonded by three structural 3M epoxy adhesives selected from different applications. The specimens were tested under monotonic and cyclic opening loads (mode-I) in order to evaluate the quasi-static and fatigue performances of selected adhesives at room temperature, 80°C and -40°C.
Journal Article

Heavy-Duty Vehicle Rear-View Camera Systems

2014-09-30
2014-01-2381
Transport Canada, through its ecoTECHNOLOGY for Vehicles program, retained the services of the National Research Council Canada to undertake a test program to examine the operational and human factors considerations concerning the removal of the side mirrors on a Class 8 tractor equipped with a 53 foot dry van semi-trailer. Full scale aerodynamic testing was performed in a 2 m by 3 m wind tunnel on a system component basis to quantify the possible fuel savings associated with the removal of the side mirrors. The mirrors on a Volvo VN780 tractor were removed and replaced with a prototype camera-based indirect vision system consisting of four cameras mounted in the front fender location; two cameras on either side of the vehicle. Four monitors mounted in the vehicle - two mounted on the right A-pillar and two mounted on the left A-pillar - provided indirect vision information to the vehicle operator.
Journal Article

A Methodology for Investigating and Modelling Laser Clad Bead Geometry and Process Parameter Relationships

2014-04-01
2014-01-0737
Laser cladding is a method of material deposition through which a powdered or wire feedstock material is melted and consolidated by use of a laser to coat part of a substrate. Determining the parameters to fabricate the desired clad bead geometry for various configurations is problematic as it involves a significant investment of raw materials and time resources, and is challenging to develop a predictive model. The goal of this research is to develop an experimental methodology that minimizes the amount of data to be collected, and to develop a predictive model that is accurate, adaptable, and expandable. To develop the predictive model of the clad bead geometry, an integrated five-step approach is presented. From the experimental data, an artificial neural network model is developed along with multiple regression equations.
Journal Article

The Effects of Ground Simulation on Tractor-Trailer Combinations

2013-09-24
2013-01-2454
The 9-meter wind tunnel of the National Research Council (NRC) of Canada is equipped with a boundary layer suction system, center belt and wheel rollers to simulate ground motion relative to test articles. Although these systems were originally commissioned for testing of full-scale automotive models, they are appropriately sized for ground simulation with half-scale tractor-trailer combinations. The size of the tunnel presents an opportunity to test half-scale commercial vehicles at full-scale Reynolds numbers with a model that occupies 3% of the test section cross-sectional area. This study looks at the effects of ground simulation on the force and pressure data of a half-scale model with rotating tractor wheels. A series of model changes, typical of a drag reduction program, were undertaken and each configuration was tested with both a fixed floor and with full-ground simulation to evaluate the effects of this technology on the total and incremental drag coefficients.
Journal Article

Measurement of the On-Road Turbulence Environment Experienced by Heavy Duty Vehicles

2014-09-30
2014-01-2451
Terrestrial winds play an important role in affecting the aerodynamics of road vehicles. Of increasing importance is the effect of the unsteady turbulence structure of these winds and their influence on the process of optimizing aerodynamic performance to reduce fuel consumption. In an effort to predict better the aerodynamic performance of heavy-duty vehicles and various drag reduction technologies, a study was undertaken to measure the turbulent wind characteristics experienced by heavy-duty vehicles on the road. To measure the winds experienced on the road, a sport utility vehicle (SUV) was outfitted with an array of four fast-response pressure probes that could be arranged in vertical or horizontal rake configurations that provided measurements up to 4.0 m from the ground and spanning a width of 2.4 m. To characterize the influence of the proximity of the vehicle on the pressure signals of the probes, the SUV and its measurements system was calibrated in a large wind tunnel.
Journal Article

Methods for Evaluating the Functional Work Space for Machine Tools and 6 Axis Serial Robots

2016-04-05
2016-01-0338
The ‘boundary of space’ model representing all possible positions which may be occupied by a mechanism during its normal range of motion (for all positions and orientations) is called the work envelope. In the robotic domain, it is also known as the robot operating envelope or workspace. Several researchers have investigated workspace boundaries for different degrees of freedom (DOF), joint types and kinematic structures utilizing many approaches. The work envelope provides essential boundary information, which is critical for safety and layout concerns, but the work envelope information does not by itself determine the reach feasibility of a desired configuration. The effect of orientation is not captured as well as the coupling related to operational parameters. Included in this are spatial occupancy concerns due to linking multiple kinematic chains, which is an issue with multi-tasking machine tools, and manufacturing cells.
Journal Article

A Framework for Collaborative Robot (CoBot) Integration in Advanced Manufacturing Systems

2016-04-05
2016-01-0337
Contemporary manufacturing systems are still evolving. The system elements, layouts, and integration methods are changing continuously, and ‘collaborative robots’ (CoBots) are now being considered as practical industrial solutions. CoBots, unlike traditional CoBots, are safe and flexible enough to work with humans. Although CoBots have the potential to become standard in production systems, there is no strong foundation for systems design and development. The focus of this research is to provide a foundation and four tier framework to facilitate the design, development and integration of CoBots. The framework consists of the system level, work-cell level, machine level, and worker level. Sixty-five percent of traditional robots are installed in the automobile industry and it takes 200 hours to program (and reprogram) them.
Journal Article

A Linkage Based Solution Approach for Determining 6 Axis Serial Robotic Travel Path Feasibility

2016-04-05
2016-01-0336
When performing trajectory planning for robotic applications, there are many aspects to consider, such as the reach conditions, joint and end-effector velocities, accelerations and jerk conditions, etc. The reach conditions are dependent on the end-effector orientations and the robot kinematic structure. The reach condition feasibility is the first consideration to be addressed prior to optimizing a solution. The ‘functional’ work space or work window represents a region of feasible reach conditions, and is a sub-set of the work envelope. It is not intuitive to define. Consequently, 2D solution approaches are proposed. The 3D travel paths are decomposed to a 2D representation via radial projections. Forward kinematic representations are employed to define a 2D boundary curve for each desired end effector orientation.
Journal Article

A System for Simulating Road-Representative Atmospheric Turbulence for Ground Vehicles in a Large Wind Tunnel

2016-04-05
2016-01-1624
Turbulence is known to influence the aerodynamic and aeroacoustic performance of ground vehicles. What is not thoroughly understood are the characteristics of turbulence that influence this performance and how they can be applied in a consistent manner for aerodynamic design and evaluation purposes. Through collaboration between Transport Canada and the National Research Council Canada (NRC), a project was undertaken to develop a system for generating road-representative turbulence in the NRC 9 m Wind Tunnel, named the Road Turbulence System (RTS). This endeavour was undertaken in support of a larger project to evaluate new and emerging drag reduction technologies for heavy-duty vehicles. A multi-stage design process was used to develop the RTS for use with a 30% scale model of a heavy-duty vehicle in the NRC 9m Wind Tunnel.
Journal Article

Using Neural Networks to Examine the Sensitivity of Composite Material Mechanical Properties to Processing Parameters

2016-04-05
2016-01-0499
Successful manufacture of Carbon Fibre Reinforced Polymers (CFRP) by Long-Fibre Reinforced Thermoplastic (LFT) processes requires knowledge of the effect of numerous processing parameters such as temperature set-points, rotational machinery speeds, and matrix melt flow rates on the resulting material properties after the final compression moulding of the charge is complete. The degree to which the mechanical properties of the resulting material depend on these processing parameters is integral to the design of materials by any process, but the case study presented here highlights the manufacture of CFRP by LFT as a specific example. The material processing trials are part of the research performed by the International Composites Research Centre (ICRC) at the Fraunhofer Project Centre (FPC) located at the University of Western Ontario in London, Ontario, Canada.
Technical Paper

Impact of Lateral Alignment on the Energy Savings of a Truck Platoon

2020-04-14
2020-01-0594
A truck platooning system was tested using two heavy-duty tractor-trailer trucks on a closed test track to investigate the sensitivity of intentional lateral offsets over a range of intervehicle spacings. The fuel consumption for both trucks in the platoon was measured using the SAE J1321 gravimetric procedure while travelling at 65 mph and loaded to a gross weight of 65,000 lb. In addition, the SAE J1939 instantaneous fuel rate was calibrated against the gravimetric measurements and used as proxy for additional analyses. The testing campaign demonstrated the effects of intervehicle gaps, following-vehicle longitudinal control, and manual lateral control. The new results are compared to previous truck-platooning studies to reinforce the value of the new information and demonstrate similarity to past trends. Fuel savings for the following vehicle was observed to exceed 10% at closer following distances.
Technical Paper

LiDAR and Camera-Based Convolutional Neural Network Detection for Autonomous Driving

2020-04-14
2020-01-0136
Autonomous vehicles are currently a subject of great interest and there is heavy research on creating and improving algorithms for detecting objects in their vicinity. A ROS-based deep learning approach has been developed to detect objects using point cloud data. With encoded raw light detection and ranging (LiDAR) and camera data, several basic statistics such as elevation and density are generated. The system leverages a simple and fast convolutional neural network (CNN) solution for object identification and localization classification and generation of a bounding box to detect vehicles, pedestrians and cyclists was developed. The system is implemented on an Nvidia Jetson TX2 embedded computing platform, the classification and location of the objects are determined by the neural network. Coordinates and other properties of the object are published on to various ROS topics which are then serviced by visualization and data handling routines.
Journal Article

Virtual Motorsports as a Vehicle Dynamics Teaching Tool

2008-12-02
2008-01-2967
The paper describes a ‘virtual motorsports’ event developed by the University of Windsor Vehicle Dynamics and Control Research Group. The event was a competitive project-based component of a Vehicle Dynamics course offered by the University's Department of Mechanical, Automotive, & Materials Engineering. The simulated race was developed to provide fourth year automotive engineering students with design and race experience, similar to that found in Formula SAE®or SAE Baja®, but within the confines of a single academic semester. The project, named ‘Formula463’, was conducted entirely within a virtual environment, and encompassed design, testing, and racing of hi-fidelity virtual vehicle models. The efficacy of the Formula463 program to provide students with a design experience using model based simulation tools and methods has been shown over the past two years. All of the software has been released under a General Public License and is freely available on the authors website.
Journal Article

Considerations for the Wind Tunnel Simulation of Tractor-Trailer Combinations: Correlation of Full- and Half-Scale Measurements

2013-09-24
2013-01-2456
The 9-meter wind tunnel of the National Research Council (NRC) of Canada is commonly employed in testing of class 8 tractors at full- and model-scales. In support of this work a series of tests of an identical model at full- and half-scale were performed to investigate some of the effects resulting from simulation compromises. Minimum Reynolds Number considerations drive the crucial decisions of what scale and speed to employ for testing. The full- and half-scale campaigns included Reynolds Number sweeps allowing conclusions to be reached on the minimum Reynolds number required for testing of fully-detailed commercial truck models. Furthermore the Reynolds sweeps were repeated at a variety of yaw angles to examine whether the minimum Reynolds Number was a function of yaw angle and the resulting flow regime changes. The test section of the NRC 9-meter wind tunnel is not sufficiently long to accommodate a full-scale tractor and a typical trailer length of 48′ or more.
Technical Paper

Performance Study of an Innovative Collaborative Robot Gripper Design on Different Fabric Pick and Place Scenarios

2020-04-14
2020-01-1304
Light-weighting fiber composite materials introduced to reduce vehicle mass and known as innovative materials research activities since they provide high specific stiffness and strength compared to contemporary engineering materials. Nonetheless, there are issues related automation strategies and handling methods. Material handling of flexible textile/fiber components is a process bottleneck and it is currently being performed by setting up multi-stage manual operations for hand layups. Consequently, the long-term research objective is to develop semi-automated pick and place processes for flexible materials utilizing collaborative robots within the process. The immediate research is to experimentally validate innovatively designed grippers for efficient material pick and place tasks.
Technical Paper

Wind Tunnel Study on the “Wake Bubble” of Model Truck

2008-04-14
2008-01-0739
Heavy traffic volume makes tailgating a common picture on the road today. Wake interference, particularly in the scenario when a relatively small sedan drives into the wake of a large truck, may raise some serious highway safety concerns. In this paper, the characteristics of the separation bubble of model trucks with various degrees of details are studied. The objective is to find out the impact of truck model details on the characteristics of the wake bubble. Our wind tunnel results revealed that the degree of model detail has a significant effect on the wake bubble; the bubble length increases with model details.
Technical Paper

Separation and Liberation Factors in Designing for Automotive Materials Recovery

2004-03-08
2004-01-0471
One critical aspect of design-for-environment efforts is to increase the effectiveness of materials recovery from end-of-life vehicles. Recovery itself depends on both the amount of material recovered and the purity of the material stream. Shredding, and screening are often used to separate recyclable materials from wastes. However, with the increasing amount of composite components, particularly those made from plastics, separation processes may be inadequate. Instead, liberation processes, which reduce the physical joints between materials, are also important. In this research, samples of ABS and PVC plastics were assembled into various configurations, ground up, and then characterized by their size distributions and degrees of liberation. Two primary fastening methods - adhesive and riveting - were used to simulate how plastic components would be actually attached together.
Technical Paper

Emissions from Heavy-Duty Diesel Engine with EGR using Fuels Derived from Oil Sands and Conventional Crude

2003-10-27
2003-01-3144
The exhaust emissions from a single-cylinder version of a heavy-duty diesel engine with exhaust gas recirculation (EGR) were studied using 12 diesel fuels derived from oil sands and conventional sources. The test fuels were blended from 22 refinery streams to produce four fuels (two from each source) at three different total aromatic levels (10, 20, and 30% by mass). The cetane numbers were held constant at 43. Exhaust emissions were measured using the AVL eight-mode steady-state test procedure. PM emissions were accurately modeled by a single regression equation with two predictors, total aromatics and sulphur content. Sulphate emissions were found to be independent of the type of sulphur compound in the fuel. NOx emissions were accurately modeled by a single regression equation with total aromatics and density as predictor variables. PM and NOx emissions were significantly significantly affected by fuel properties, but crude oil source did not play a role.
Technical Paper

The University of Windsor - St. Clair College E85 Silverado

2001-03-05
2001-01-0680
The fuel called E-85 can be burned effectively in engines similar to the engines currently mass-produced for use with gasoline. Since the ethanol component of this fuel is produced from crops such as corn and sugar cane, the fuel is almost fully renewable. The different physical and chemical properties of E-85, however, do require certain modifications to the common gasoline engine. The Windsor - St. Clair team has focused their attention to modifications that will improve fuel efficiency and reduce tailpipe emissions. Other modifications were also performed to ensure that the vehicle would still operate with the same power and driveability as its gasoline counterpart.
Technical Paper

Development of a Plastic Manifold Noise Syntheses Technique

2001-03-05
2001-01-1144
The effects of engine noise in plastic manifolds has been a subject of study in the automotive Industry. Several SAE papers have been published on the subject. Most testing described requires access to engine dynamometers and other elaborate equipment. As part of a general study of plastic intake manifold noise characteristics, this study was undertaken to develop a synthesis bench for enabling low cost noise testing of plastic induction systems including plastic manifolds. Computer simulation of engine intake noise was used as part of a correlation between the plastic manifold synthesis bench and actual engine measurements. The Fast Fourier Transform (FFT) analysis provided analogous results between the predicted theoretical and two measured signals with a fundamental frequency at approximately 80 Hz. Qualitative and statistical comparisons of the time domain signals also proved equally favourable. Recommendations are included for further development of this approach.
X