Refine Your Search

Topic

Search Results

Viewing 1 to 15 of 15
Technical Paper

Detection of Polar Compounds Condensed on Particulate Matter Using Capillary Electrophoresis-Mass Spectrometry

2020-04-14
2020-01-0395
A new analytical method to aid in the understanding of the organic carbon (OC) phase of particulate matter (PM) from advanced compression ignition (ACI) operating modes, is presented. The presence of NO2 and unburned fuel aromatics in ACI emissions, and the low exhaust temperatures that result from this low temperature combustion strategy, provide the right conditions for the formation of carboxylic acids and nitroaromatic compounds. These polar compounds contribute to OC in the PM and are not typically measured using nonpolar solvent extraction methods such as the soluble organic fraction (SOF) method. The new extraction and detection method employs capillary electrophoresis with electrospray ionization mass spectrometry (CE-ESI MS) and was specifically developed to determine polar organic compounds in the ACI PM emissions. The new method identified both nitrophenols and aromatic carboxylic acids in the ACI PM.
Journal Article

High-Resolution X-Ray and Neutron Computed Tomography of an Engine Combustion Network Spray G Gasoline Injector

2017-03-28
2017-01-0824
Given the importance of the fuel-injection process on the combustion and emissions performance of gasoline direct injected engines, there has been significant recent interest in understanding the fluid dynamics within the injector, particularly around the needle and through the nozzles. The pressure losses and transients that occur in the flow passages above the needle are also of interest. Simulations of these injectors typically use the nominal design geometry, which does not always match the production geometry. Computed tomography (CT) using x-ray and neutron sources can be used to obtain the real geometry from production injectors, but there are trade-offs in using these techniques. X-ray CT provides high resolution, but cannot penetrate through the thicker parts of the injector. Neutron CT has excellent penetrating power but lower resolution.
Journal Article

Compatibility Assessment of Elastomeric Infrastructure Materials with Neat Diesel and a Diesel Blend Containing 20 Percent Fast Pyrolysis Bio-oil

2015-04-14
2015-01-0888
The compatibility of elastomer materials used in fuel storage and dispensing applications was determined for an off-highway diesel fuel and a blend containing 20% bio-oil (Bio20) derived from a fast pyrolysis process. (This fuel blend is not to be confused with B20, which is a blend of diesel fuel with 20% biodiesel.) The elastomer types evaluated in this study included fluorocarbon, fluorosilicone, acrylonitrile rubber (NBR), styrene butadiene rubber (SBR), polyurethane, neoprene, and silicone. All of these elastomer types are used in sealing applications, but some, like the nitrile rubbers are also common hose materials. The elastomer specimens were exposed to the two fuel types for 4 weeks at 60°C. After measuring the wetted volume and hardness, the specimens were dried for 65 hours at 60°C and then remeasured. A solubility analysis was performed to better understand the performance of plastic materials in fuel blends composed of bio-oil and diesel.
Journal Article

Compatibility Assessment of Plastic Infrastructure Materials with Off-Highway Diesel and a Diesel Blend Containing 20 Percent Fast Pyrolysis Bio-Oil

2015-04-14
2015-01-0893
The compatibility of plastic materials used in fuel storage and dispensing applications was determined for an off-highway diesel fuel and a blend containing 20% bio-oil (Bio20) derived from a fast pyrolysis process. Bio20 is not to be confused with B20, which is a diesel blend containing 20% biodiesel. The feedstock, processing, and chemistry of biodiesel are markedly different from bio-oil. Plastic materials included those identified for use as seals, coatings, piping and fiberglass resins, but many are also used in vehicle fueling systems. The plastic specimens were exposed to the two fuel types for 16 weeks at 60°C. After measuring the wetted volume and hardness, the specimens were dried for 65 hours at 60°C and then remeasured to determine extent of property change. A solubility analysis was performed to better understand the performance of plastic materials in fuel blends composed of bio-oil and diesel.
Journal Article

Novel Characterization of GDI Engine Exhaust for Gasoline and Mid-Level Gasoline-Alcohol Blends

2014-04-01
2014-01-1606
Gasoline direct injection (GDI) engines can offer improved fuel economy and higher performance over their port fuel-injected (PFI) counterparts, and are now appearing in increasingly more U.S. and European vehicles. Small displacement, turbocharged GDI engines are replacing large displacement engines, particularly in light-duty trucks and sport utility vehicles, in order for manufacturers to meet more stringent fuel economy standards. GDI engines typically emit the most particulate matter (PM) during periods of rich operation such as start-up and acceleration, and emissions of air toxics are also more likely during this condition. A 2.0 L GDI engine was operated at lambda of 0.91 at typical loads for acceleration (2600 rpm, 8 bar BMEP) on three different fuels; an 87 anti-knock index (AKI) gasoline (E0), 30% ethanol blended with the 87 AKI fuel (E30), and 48% isobutanol blended with the 87 AKI fuel.
Journal Article

Effect of Accelerated Aging Rate on the Capture of Fuel-Borne Metal Impurities by Emissions Control Devices

2014-04-01
2014-01-1500
Small impurities in the fuel can have a significant impact on the emissions control system performance over the lifetime of the vehicle. Of particular interest in recent studies has been the impact of sodium, potassium, and calcium that can be introduced either through fuel constituents, such as biodiesel, or as lubricant additives. In a collaboration between the National Renewable Energy Laboratory and the Oak Ridge National Laboratory, a series of accelerated aging studies have been performed to understand the potential impact of these metals on the emissions control system. This paper explores the effect of the rate of accelerated aging on the capture of fuel-borne metal impurities in the emission control devices and the subsequent impact on performance. Aging was accelerated by doping the fuel with high levels of the metals of interest. Three separate evaluations were performed, each with a different rate of accelerated aging.
Technical Paper

Diesel Particulate Oxidation Model: Combined Effects of Volatiles and Fixed Carbon Combustion

2010-10-25
2010-01-2127
Diesel particulate samples were collected from a light duty engine operated at a single speed-load point with a range of biodiesel and conventional fuel blends. The oxidation reactivity of the samples was characterized in a laboratory reactor, and BET surface area measurements were made at several points during oxidation of the fixed carbon component of both types of particulate. The fixed carbon component of biodiesel particulate has a significantly higher surface area for the initial stages of oxidation, but the surface areas for the two particulates become similar as fixed carbon oxidation proceeds beyond 40%. When fixed carbon oxidation rates are normalized to total surface area, it is possible to describe the oxidation rates of the fixed carbon portion of both types of particulates with a single set of Arrhenius parameters. The measured surface area evolution during particle oxidation was found to be inconsistent with shrinking sphere oxidation.
Technical Paper

Effects of NOX Storage Component on Ammonia Formation in TWC for Passive SCR NOX Control in Lean Gasoline Engines

2018-04-03
2018-01-0946
A prototype three-way catalyst (TWC) with NOX storage component was evaluated for ammonia (NH3) generation on a 2.0-liter BMW lean burn gasoline direct injection engine as a component in a passive ammonia selective catalytic reduction (SCR) system. The passive NH3 SCR system is a potential approach for controlling nitrogen oxides (NOX) emissions from lean burn gasoline engines. In this system, NH3 is generated over a close-coupled TWC during periodic slightly-rich engine operation and subsequently stored on an underfloor SCR catalyst. Upon switching to lean, NOX passes through the TWC and is reduced by the stored NH3 on the SCR catalyst. Adding a NOX storage component to a TWC provides two benefits in the context of a passive SCR system: (1) enabling longer lean operation by storing NOX upstream and preserving NH3 inventory on the downstream SCR catalyst; and (2) increasing the quantity and rate of NH3 production during rich operation.
Technical Paper

Impact of Fuel Metal Impurities on the Durability of a Light-Duty Diesel Aftertreatment System

2013-04-08
2013-01-0513
Alkali and alkaline earth metal impurities found in diesel fuels are potential poisons for diesel exhaust catalysts. Using an accelerated aging procedure, a set of production exhaust systems from a 2011 Ford F250 equipped with a 6.7L diesel engine have been aged to an equivalent of 150,000 miles of thermal aging and metal exposure. These exhaust systems included a diesel oxidation catalyst (DOC), selective catalytic reduction (SCR) catalyst, and diesel particulate filter (DPF). Four separate exhaust systems were aged, each with a different fuel: ULSD containing no measureable metals, B20 containing sodium, B20 containing potassium and B20 containing calcium. Metals levels were selected to simulate the maximum allowable levels in B100 according to the ASTM D6751 standard. Analysis of the aged catalysts included Federal Test Procedure emissions testing with the systems installed on a Ford F250 pickup, bench flow reactor testing of catalyst cores, and electron probe microanalysis (EPMA).
Technical Paper

Phosphorous Poisoning and Phosphorous Exhaust Chemistry with Diesel Oxidation Catalysts

2005-04-11
2005-01-1758
Phosphorous in diesel exhaust is derived via engine oil consumption from the zinc dialkyldithiophosphate (ZDDP) oil additive used for engine wear control. Phosphorous present in the engine exhaust can react with an exhaust catalyst and cause loss of performance through masking or chemical reaction. The primary effect is loss of light-off or low temperature performance. Although the amount of ZDDP used in lube oil is being reduced, it appears that there may is a minimum level of ZDDP needed for engine durability. One of the ways of reducing the effects of the resulting phosphorous on catalysts might be to alter the chemical state of the phosphorous to a less damaging form or to develop catalysts which are more resistant to phosphorous poisoning. In this study, lube oil containing ZDDP was added at an accelerated rate through a variety of engine pathways to simulate various types of engine wear or oil disposal practices.
Technical Paper

Assessing Reductant Chemistry During In-Cylinder Regeneration of Diesel Lean NOx Traps

2004-10-25
2004-01-3023
Lean NOx Trap (LNT) catalysts are capable of reducing NOx in lean exhaust from diesel engines. NOx is stored on the catalyst during lean operation; then, under rich exhaust conditions, the NOx is released from and reduced by the catalyst. The process of NOx release and reduction is called regeneration. One method of obtaining the rich conditions for regeneration is to inject additional fuel into the engine cylinders while throttling the engine intake air flow to effectively run the engine at rich air:fuel ratios; this method is called “in-cylinder” regeneration. In-cylinder regeneration of LNT catalysts has been demonstrated and is a candidate emission control technique for commercialization of light-duty diesel vehicles to meet future emission regulations. In the study presented here, a 1.7-liter diesel engine with a LNT catalyst system was used to evaluate in-cylinder regeneration techniques.
Technical Paper

Development of a Cold Start Fuel Penalty Metric for Evaluating the Impact of Fuel Composition Changes on SI Engine Emissions Control

2018-04-03
2018-01-1264
The U.S. Department of Energy’s Co-Optimization of Fuels and Engines initiative (Co-Optima) aims to simultaneously transform both transportation fuels and engines to maximize performance and energy efficiency. Researchers from across the DOE national laboratories are working within Co-Optima to develop merit functions for evaluating the impact of fuel formulations on the performance of advanced engines. The merit functions relate overall engine efficiency to specific measurable fuel properties and will serve as key tools in the fuel/engine co-optimization process. This work focused on developing a term for the Co-Optima light-duty boosted spark ignition (SI) engine merit function that captures the effects of fuel composition on emissions control system performance. For stoichiometric light-duty SI engines, the majority of NOx, NMOG, and CO emissions occur during cold start, before the three-way catalyst (TWC) has reached its “light-off” temperature.
Technical Paper

Characterization of Particulate Matter Emissions from Heavy-Duty Partially Premixed Compression Ignition with Gasoline-Range Fuels

2019-04-02
2019-01-1185
In this study, the compression ratio of a commercial 15L heavy-duty diesel engine was lowered and a split injection strategy was developed to promote partially premixed compression ignition (PPCI) combustion. Various low reactivity gasoline-range fuels were compared with ultra-low-sulfur diesel fuel (ULSD) for steady-state engine performance and emissions. Specially, particulate matter (PM) emissions were examined for their mass, size and number concentrations, and further characterized by organic/elemental carbon analysis, chemical speciation and thermogravimetric analysis. As more fuel-efficient PPCI combustion was promoted, a slight reduction in fuel consumption was observed for all gasoline-range fuels, which also had higher heating values than ULSD. Since mixing-controlled combustion dominated the latter part of the combustion process, hydrocarbon (HC) and carbon monoxide (CO) emissions were only slightly increased with the gasoline-range fuels.
Technical Paper

Direct Measurement and Chemical Speciation of Top Ring Zone Liquid During Engine Operation

2015-04-14
2015-01-0741
The present manuscript consists of proof of concept experiments involving direct measurements and detailed chemical speciation from the top ring zone of a running engine. The work uses a naturally aspirated single cylinder utility engine that has been modified to allow direct liquid sample acquisition from behind the top ring. Samples were analyzed and speciated using gas chromatographic techniques. Results show that the liquid mixture in the top ring zone is neither neat lubricant nor fuel but a combination of the two with unique chemical properties. At the tested steady state no-load operating condition, the chemical species of the top ring zone liquid were found to be highly dependent on boiling point, where both low reactivity higher boiling point fuel species and lubricant are observed to be the dominant constituents.
Journal Article

Effects of Oil Formulation, Oil Separator, and Engine Speed and Load on the Particle Size, Chemistry, and Morphology of Diesel Crankcase Aerosols

2016-04-05
2016-01-0897
The recirculation of gases from the crankcase and valvetrain can potentially lead to the entrainment of lubricant in the form of aerosols or mists. As boost pressures increase, the blow-by flow through both the crankcase and the valve cover increases. The resulting lubricant can then become part of the intake charge, potentially leading to fouling of intake components such as the intercooler and the turbocharger. The entrained aerosol which can contain the lubricant and soot may or may not have the same composition as the bulk lubricant. The complex aerodynamic processes that lead to entrainment can strip out heavy components or volatilize light components. Similarly, the physical size and numbers of aerosol particles can be dependent upon the lubricant formulation and engine speed and load. For instance, high rpm and load may increase not only the flow of gases but the amount of lubricant aerosol.
X