Refine Your Search

Topic

Author

Search Results

Journal Article

Investigation on the Effect of Very High Fuel Injection Pressure on Soot-NOx Emissions at High Load in a Passenger Car Diesel Engine

2009-06-15
2009-01-1930
Previous research has shown that elevating fuel injection pressure results in better air-fuel mixture formation, allowing for a further increase in maximum exhaust gas recirculation (EGR) rate while consequently reducing NOx emissions. The aim of this paper is to find out whether there is an optimum injection pressure for lowest soot-NOx emissions at a given boost pressure in high-speed diesel engines. Experiments are carried out on a single-cylinder research engine with a prototype common-rail system, capable of more than 200 MPa injection pressure. The effect of injection pressure on soot-NOx formation is investigated for a variety of boost conditions, representing the conditions of single to multi-stage turbocharger systems. Analysis of the data is performed at the application relevant soot to NOx ratio of approximately 1:10. It is observed that above a critical injection pressure, soot-NOx emissions are not reduced any further.
Journal Article

Engine Start-Up Optimization using the Transient Burn Rate Analysis

2011-04-12
2011-01-0125
The introduction of CO₂-reduction technologies like Start-Stop or the Hybrid-Powertrain and the future emission legislation require a detailed optimization of the engine start-up. The combustion concept development as well as the calibration of the ECU makes an explicit thermodynamic analysis of the combustion process during the start-up necessary. Initially, the well-known thermodynamic analysis of in-cylinder pressure at stationary condition was transmitted to the highly non-stationary engine start-up. There, the current models for calculation of the transient wall heat fluxes were found to be misleading. Therefore, adaptations to the start-up conditions of the known models by Woschni, Hohenberg and Bargende were introduced for calculation of the wall heat transfer coefficient in SI engines with gasoline direct injection. This paper shows how the indicated values can be measured during the engine start-up.
Journal Article

Optical Investigations of the Ignition-Relevant Spray Characteristics from a Piezo-Injector for Spray-Guided Spark-Ignited Engines

2015-01-01
2014-01-9053
The spray-guided combustion process offers a high potential for fuel savings in gasoline engines in the part load range. In this connection, the injector and spark plug are arranged in close proximity to one another, as a result of which mixture formation is primarily shaped by the dynamics of the fuel spray. The mixture formation time is very short, so that at the time of ignition the velocity of flow is high and the fuel is still largely present in liquid form. The quality of mixture formation thus constitutes a key aspect of reliable ignition. In this article, the spray characteristics of an outward-opening piezo injector are examined using optical testing methods under pressure chamber conditions and the results obtained are correlated with ignition behaviour in-engine. The global spray formation is examined using high-speed visualisation methods, particularly with regard to cyclical fluctuations.
Journal Article

Estimation of Cylinder-Wise Combustion Features from Engine Speed and Cylinder Pressure

2008-04-14
2008-01-0290
Advanced engine control and diagnosis strategies for internal combustion engines need accurate feedback information from the combustion engine. The feedback information can be utilized to control combustion features which allow the improvement of engine's efficiency through real-time control and diagnosis of the combustion process. This article describes a new method for combustion phase and IMEP estimation using one in-cylinder pressure and engine speed. In order to take torsional deflections of the crankshaft into account a gray-box model of the crankshaft is identified by subspace identification. The modeling accuracy is compared to a stiff physical crankshaft model. For combustion feature estimation, the identified MISO (multiple input single output) system is inverted. Experiments for a four-cylinder spark-ignition engine show the superior performance of the new method for combustion feature estimation compared to a stiff model approach.
Journal Article

Investigations on the Transient Wall Heat Transfer at Start-Up for SI Engines with Gasoline Direct Injection

2009-04-20
2009-01-0613
The introduction of CO2-reduction technologies like Start-Stop or the Hybrid-Powertrain and the future emissions regulations require a detailed optimization of the engine start-up. The combustion concept development as well as the calibration of the ECU makes it necessary to carry out an explicit thermodynamic analysis of the combustion process during the start-up. As of today, the well-known thermodynamic analysis using in-cylinder pressure traces at stationary condition is transmitted to the highly dynamic engine start-up. Due to this approximation the current models for calculation of the transient wall heat fluxes by Woschni, Hohenberg and Bargende do not lead to desired results. But with a fraction of approximately 40 % of the burnt fuel energy, the wall heat is very important for the calculation of energy balance and for the combustion process analysis during start-up.
Journal Article

Novel Transient Wall Heat Transfer Approach for the Start-up of SI Engines with Gasoline Direct Injection

2010-04-12
2010-01-1270
The introduction of CO₂-reduction technologies like Start-Stop or the Hybrid-Powertrain and the future emissions limits require a detailed optimization of the engine start-up. The combustion concept development as well as the calibration of the ECU makes an explicit thermodynamic analysis of the combustion process during the start-up necessary. Initially, the well-known thermodynamic analysis of in-cylinder pressure at stationary condition was transmitted to the highly non-stationary engine start-up. There, the current models for calculation of the transient wall heat fluxes were found to be misleading. But with a fraction of nearly 45% of the burned fuel energy, the wall heat is very important for the calculation of energy balance and for the combustion process analysis.
Technical Paper

Crank Angle Resolved Determination of Fuel Concentration and Air/Fuel Ratio in a SI-Internal Combustion Engine Using a Modified Optical Spark Plug

2007-04-16
2007-01-0644
A fiber optical sensor system was used to detect the local fuel concentration in the vicinity of the spark position in a cylinder of a four-stroke SI production engine. The fuel concentration was determined by the infrared absorption method, which allows crank angle resolved fuel concentration measurements during multiple successive engine cycles. The sensor detects the attenuation of infrared radiation in the 3.4 μm wavelength region due to the infrared vibrational-rotational absorption band of hydrocarbons (HC). The absorption path was integrated in a modified spark plug and a tungsten halide lamp was used as an infrared light source. All investigations were carried out on a four-stroke spark ignition engine with fuel injection into the intake manifold. The measurements were made under starting conditions of the engine, which means a low engine speed. The engine operated with common gasoline (Euro Super) at different air/fuel-ratios.
Technical Paper

The Challenge of Precise Characterizing the Specific Large-Span Flows in Urea Dosing Systems for NOx Reduction

2008-04-14
2008-01-1028
The reduction of nitrous oxides in the exhaust gases of internal combustion engines using a urea water solution is gaining more and more importance. While maintaining the future exhaust gas emission regulations, like the Euro 6 for passenger cars and the Euro 5 for commercial vehicles, urea dosing allows the engine management to be modified to improve fuel economy as well. The system manufacturer Robert Bosch has started early to develop the necessary dosing systems for the urea water solution. More than 300.000 Units have been delivered in 2007 for heavy duty applications. Typical dosing quantities for those systems are in the range of 0.01 l/h for passenger car systems and up to 10 l/h for commercial vehicles. During the first years of development and application of urea dosing systems, instantaneous flow measuring devices were used, which were not operating fully satisfactory.
Technical Paper

Control Strategy for NOx - Emission Reduction with SCR

2003-11-10
2003-01-3362
Future emission standards for heavy-duty vehicles like Euro 4, Euro 5, US '07 require advanced engine functionality. One contribution to achieve this target is the catalytic reduction of nitrogen oxides by injection of urea water solution to the exhaust gas. An overview on a urea dosing system, also called DENOXTRONIC, is given and a dosing strategy is described.
Technical Paper

Preparing for CARTRONIC - Interface and New Strategies for Torque Coordination and Conversion in a Spark Ignition Engine-Management System

2001-03-05
2001-01-0268
A major trend in modern vehicle control is the increase of complexity and interaction of formerly autonomous systems. In order to manage the resulting network of more and more integrated (sub)systems Bosch has developed an open architecture called CARTRONIC for structuring the entire vehicle control system. Structuring the system in functionally independent components improves modular software development and allows the integration of new elements such as integrated starter/generator and the implementation of advanced control concepts as drive train management. This approach leads to an open structure on a high level for the design of advanced vehicle control systems. The paper describes the integration of the spark-ignition (SI) engine management system (EMS) into a CARTRONIC conform vehicle coordination requiring a new standard interface between the vehicle coordination and the EMS level.
Technical Paper

FEM Approximation of Internal Combustion Chambers for Knock Investigations

2002-03-04
2002-01-0237
The resonances of SI engine combustion chambers are slightly excited during normal combustion but strongly excited by knock. In order to avoid knocking combustions extensive knowledge about knock and its effects is necessary. In this paper the combustion chamber of a serial production engine is modeled by finite elements. Modal analyses are performed in order to gain information about the resonances, their frequencies, and their frequency and amplitude modulations. Simulation results are compared to measured data using a high-resolution time-frequency method. Furthermore, a connection between knock origin and the excitation of the resonances is postulated applying transient analyses.
Technical Paper

The Development and Performance of the Compact SCR-Trap System: A 4-Way Diesel Emission Control System

2003-03-03
2003-01-0778
The tightening of Heavy Duty Diesel (HDD) emissions legislation throughout the world is leading to the development of emission control devices to enable HDD engines to meet the new standards. NOx and Particulate Matter (PM) are the key pollutants which these emission control systems need to address. Diesel Particulate Filters (DPFs) are already in use in significant numbers to control PM emissions from HDD vehicles, and Selective Catalytic Reduction (SCR) is a very promising technology to control NOx emissions. This paper describes the development and performance of the Compact SCR-Trap system - a pollution control device comprising a DPF-based system (the Continuously Regenerating Trap system) upstream of an SCR system. The system has been designed to be as easy to package as possible, by minimising the total volume of the system and by incorporating the SCR catalysts on annular substrates placed around the outside of the DPF-based system.
Technical Paper

Experimental Measurement Techniques to Optimize Design of Gasoline Injection Valves

1992-02-01
920520
In order to reduce the spark-ignition engine exhaust-gas emission and fuel consumption, it is essential that the required air/fuel ratio is maintained under all operating conditions. An important contribution to this claim is delivered by the injection valve by metering the fuel precisely and producing fine atomization. In this report experimental methods to get specific measuring information and methods for optimizing flow in injection valves are described. Original valves as well as large-scale models were used for the investigations concerning the steady and unsteady-flow characteristics, and were equipped with a number of different sensors. Holograms of the short-time recording of the spray cone are generated and used for the quantification of the atomization quality when injecting into atmospheric pressure and into vacuum, thus complying with the conditions encountered in the engine intake-manifold.
Technical Paper

Impact of the Injection and Gas Exchange on the Particle Emission of a Spark Ignited Engine with Port Fuel Injection

2017-03-28
2017-01-0652
This study presents a methodology to predict particle number (PN) generation on a naturally aspirated 4-cylinder gasoline engine with port fuel injection (PFI) from wall wetting, employing numerical CFD simulation and fuel film analysis. Various engine parameters concerning spray pattern, injection timing, intake valve timing, as well as engine load/speed were varied and their impact on wall film and PN was evaluated. The engine, which was driven at wide open throttle (WOT), was equipped with soot particle sampling technology and optical access to the combustion chamber of cylinder 1 in order to visualise non-premixed combustion. High-speed imaging revealed a notable presence of diffusion flames, which were typically initiated between the valve seats and cylinder head. Their size was found to match qualitatively with particulate number measurements. A validated CFD model was employed to simulate spray propagation, film transport and droplet impingement.
Technical Paper

Numerical and Experimental Studies on Mixture Formation with an Outward-Opening Nozzle in a SI Engine with CNG-DI

2016-04-05
2016-01-0801
CNG direct injection is a promising technology to promote the acceptance of natural gas engines. Among the beneficial properties of CNG, like reduced pollutants and CO2 emissions, the direct injection contributes to a higher volumetric efficiency and thus to a better driveability, one of the most limiting drawbacks of today’s CNG vehicles. But such a combustion concept increases the demands on the injection system and mixture formation. Among other things it requires a much higher flow rate at low injection pressure. This can be only provided by an outward-opening nozzle due to its large cross-section. Nevertheless its hollow cone jet with a specific propagation behavior leads to an adverse fuel-air distribution especially at higher loads under scavenging conditions. This paper covers numerical and experimental analysis of CNG direct injection to understand its mixture formation.
Technical Paper

Analysis of the Combustion Mode Switch Between SI and Gasoline HCCI

2012-04-16
2012-01-1105
The worldwide stricter emission legislation and growing demands for lower fuel consumption require for significant efforts to improve combustion efficiency while satisfying the emission quality demands. Homogeneous Charge Compression Ignition (HCCI) on gasoline engines provides a particularly promising and, at the same time, challenging approach, especially regarding the combustion mode switch between spark-ignited (SI) and gasoline HCCI mode and vice-versa. Naturally aspirated (n.a.) HCCI shows considerable potential, but the operation range is air breathing limited due to hot residuals required for auto-ignition and to slow down reaction kinetics. Therefore it is limited to part-load operation. Considering the future gasoline engine market with growing potentials identified on downsized gasoline engines, it is imperative to investigate the synergies and challenges of boosted HCCI.
Technical Paper

A Thermodynamic Study on Boosted HCCI: Experimental Results

2011-04-12
2011-01-0905
Stricter emissions legislation and growing demands for lower fuel consumption require significant efforts to improve combustion efficiency while satisfying the emission quality demands. Controlled Homogeneous Charge Compression Ignition (HCCI) combined with boosted air systems on gasoline engines provides a particularly promising, yet challenging, approach. Naturally aspirated (NA) HCCI has already shown considerable potential in combustion efficiency gains. Nevertheless, since the volumetric efficiency is limited in the NA HCCI operation range due to the hot residuals required to ignite the mixture and slow down reaction kinetics, only part-load operation is feasible in this combustion mode. Considering the future gasoline engine market with growing potentials identified in downsized gasoline engines, it becomes necessary to investigate the synergies and challenges of controlled, boosted HCCI.
Technical Paper

Analysis of the In-Cylinder Flow Field / Spray Injection Interaction within a DISI IC Engine Using High-Speed PIV

2011-04-12
2011-01-1288
This study presents measurements of transient flow field and spray structures inside an optically accessible DISI (direct-injection spark-ignition) internal combustion engine. The flow field has a direct effect upon mixture and combustion processes. Given the need to increase the efficiency and performance of modern IC engines and thus reduce emissions a detailed understanding of the flow field is necessary. The method of choice was high-speed two-component particle image velocimetry (PIV) imaging a large field of view (43 x 44 mm₂). To capture the temporal evolution of the main flow features the repetition rate was set to 6 kHz which resolves one image per 1° crank angle (CA) at 1000 rpm. The crank angle range recorded was the latter half of the compression stroke at various engine speeds as well as various charge motions (neutral, tumble and swirl). Moreover, consecutive cycles were recorded allowing a detailed investigation of cycle-to-cycle variations.
Technical Paper

Study on Boosted Direct Injection SI Combustion with Ethanol Blends and the Influence on the Ignition System

2011-10-04
2011-36-0196
The stricter worldwide emission legislation and growing demands for lower fuel consumption and CO2-emission require for significant efforts to improve combustion efficiency while satisfying the emission quality demands. Ethanol fuel combined with boosting on direct injection gasoline engines provides a particularly promising and, at the same time, a challenging approach. Brazil is one of the main Ethanol fuel markets with its E24 and E100 fuel availability, which covers a large volume of the national needs. Additionally, worldwide Ethanol availability is becoming more and more important, e.g., in North America and Europe. Considering the future flex-fuel engine market with growing potentials identified on downsized spark ignition engines, it becomes necessary to investigate the synergies and challenges of Ethanol boosted operation. Main topic of the present work focuses on the operation of Ethanol blends up to E100 at high loads up to 30 bar imep.
Technical Paper

Design of a Boosted 2-Cylinder SI-Engine with Gasoline Direct Injection to Define the Needs of Future Powertrains

2012-04-16
2012-01-0832
To meet future CO₂ emissions limits and satisfy the bounds set by exhaust gas legislation reducing the engine displacement while maintaining the power output ("Downsizing") becomes of more and more importance to the SI-engine development process. The total number of cylinders per engine has to be reduced to keep the thermodynamic disadvantages of a small combustion chamber layout as small as possible. Doing so leads to new challenges concerning the mechanical design, the design of the combustion system concept as well as strategies maintaining a satisfying transient torque behavior. To address these challenges a turbocharged 2-cylinder SI engine with gasoline direct injection was designed for research purposes by Weber Motor and Bosch. This paper wants to offer an insight in the design process. The mechanical design as well as the combustion system concept process will be discussed.
X