Refine Your Search

Topic

Search Results

Journal Article

Cost and Fuel Efficient SCR-only Solution for Post-2010 HD Emission Standards

2009-04-20
2009-01-0915
A promising SCR-only solution is presented to meet post-2010 NOx emission targets for heavy duty applications. The proposed concept is based on an engine from a EURO IV SCR application, which is considered optimal with respect to fuel economy and costs. The addition of advanced SCR after treatment comprising a standard and a close-coupled SCR catalyst offers a feasible emission solution, especially suited for EURO VI. In this paper, results of a simulation study are presented. This study concentrates on optimizing SCR deNOx performance. Simulation results of cold start FTP and WHTC test cycles are presented to demonstrate the potential of the close-coupled SCR concept. Comparison with measured engine out emissions of an EGR engine shows that a close-coupled SCR catalyst potentially has NOx reduction performance as good as EGR. Practical issues regarding the use of an SCR catalyst in close-coupled position will be addressed, as well as engine and exhaust layout.
Journal Article

Robust Emission Management Strategy to Meet Real-World Emission Requirements for HD Diesel Engines

2015-04-14
2015-01-0998
Heavy-duty diesel engines are used in different application areas, like long-haul, city distribution, dump truck and building and construction industry. For these wide variety of areas, the engine performance needs to comply with the real-world legislation limits and should simultaneously have a low fuel consumption and good drivability. Meeting these requirements takes substantial development and calibration effort, where an optimal fuel consumption for each application is not always met in practice. TNO's Integrated Emission Management (IEM) strategy, is able to deal with these variations in operating conditions, while meeting legislation limits and obtaining on-line cost optimization. Based on the actual state of the engine and aftertreatment, optimal air-path setpoints are computed, which balances EGR and SCR usage.
Journal Article

Ammonia Sensor for Closed-Loop SCR Control

2008-04-14
2008-01-0919
Selective Catalytic Reduction (SCR) is the dominant solution for meeting future NOx reduction regulations for heavy-duty diesel powertrains. SCR systems benefit from closed-loop control if an appropriate exhaust gas sensor were available. An ammonia sensor has recently been developed for use as a feedback element in closed-loop control of urea dosing in a diesel SCR aftertreatment system. Closed-loop control of SCR dosing enables the SCR system to be robust against disturbances and to meet conformity of production (COP) and in-use compliance norms. The ammonia sensor is based on a non-equilibrium electrochemical principle and outputs emf signals. The sensor performs well when tested in a diesel engine exhaust environment and has minimum cross interference with CO, HC, NO, NO2, SO2, H2O and O2. Previous work, done in a simulation environment, demonstrated that an ammonia sensor provides the optimal feedback for urea dosing control algorithms in closed-loop SCR systems.
Technical Paper

Is Closed-Loop SCR Control Required to Meet Future Emission Targets?

2007-04-16
2007-01-1574
To meet 2010 emission targets, optimal SCR system performance is required. In addition, attention has to be paid to in-use compliance requirements. Closed-loop control seems an attractive option to meet the formulated goals. This study deals with the potential and limitations of closed-loop SCR control. High NOx conversion in combination with acceptable NH3 slip can be realized with an open-loop control strategy. However, closed-loop control is needed to make the SCR system robust for urea dosage inaccuracy, catalyst ageing and NOx engine-out variations. Then, the system meets conformity of production and in-use compliance norms. To demonstrate the potential of closed-loop SCR control, a NOx sensor based control strategy with cross-sensitivity compensation is compared with an adaptive surface coverage/NH3 slip control strategy and an open-loop strategy. The adaptive surface coverage/NH3 slip control strategy shows best performance over simulated ESC and ETC cycles.
Technical Paper

Automated Model Fit Tool for SCR Control and OBD Development

2009-04-20
2009-01-1285
Reaching EUROVI Heavy Duty emission limits will result in more testing time for developing control and OBD algorithms than to reach EUROV emissions. It is likely that these algorithms have to be adapted for a WHTC (World Heavy Duty Transient Cycle) for EUROVI. This cycle when started cold can only be performed a limited times a day on the engine testbench, because of the cooling down time. The development time and cost increases to reach EUROVI emission levels. Accurate simulation tools can reduce the time and costs by reducing the amount of tests required on the testbench. In order to use simulation tools to develop pre calibrations, the models must be fitted and validated. This paper will focus on the fit process of an SCR (Selective Catalytic Reduction) model. A unique test procedure has been developed to characterize an SCR catalyst using an engine testbench in ±2 days. This data is used in an automatic SCR fit tool to obtain the model parameters in a few days.
Technical Paper

The Climatic-Altitude Chamber as Development and Validation Tool

2010-04-12
2010-01-1294
Two major trends can be identified for powertrain control in the next decade. The legislation will more and more focus on in-use emissions. Together with the global trend to reduce the CO₂ emissions, this will lead to an integral drive train approach. To develop and validate this integral drive train approach, the need for a new chapter in powertrain testing arises. The climatic-altitude chamber, suited for heavy vehicles, serves a wide variety of testing needs. Ambient temperature can be controlled between -45°C and +55°C and ambient pressure can be reduced up to a level found at an altitude to 4000 meters. The chamber's dynamometers enable transient testing of heavy-duty engines and vehicles and the chamber is equipped with a comprehensive array of emission measurement capabilities, working under extreme conditions.
Technical Paper

Optimization of Urea SCR deNOx Systems for HD Diesel Engines

2004-03-08
2004-01-0154
In the past decade, SCR deNOx technology with urea injection has grown to maturity. European OEMs will apply SCR deNOx to meet future heavy-duty emissions legislation starting with EURO-4 (2005/2006). Numerous research programs in Europe and the US have shown a variety of system layouts and control strategies. The main differences are formed by: the engine-out NOx calibration the application of an NO to NO2 catalyst open-loop or closed-loop urea dosage control. This paper gives an overview of possible SCR system configurations that are required for different stages of future emission legislation. Engine-out NOx emission is strongly influenced by ambient conditions. Projections in this study show that a combination of cold climate and a wintergrade fuel is the most severe: it may lead to 30% lower engine-out NOx emission with respect to laboratory conditions.
Technical Paper

DAF Euro-4 Heavy Duty Diesel Engine with TNO EGR system and CRT Particulates Filter

2001-05-07
2001-01-1947
This paper reports on a study of the TNO venturi EGR system and the Johnson Matthey CRT particulates trap on a DAF 355 kW engine. The results obtained indicate that this EGR-CRT combination is an effective means to achieve EURO-4 emission level, while maintaining good fuel economy. EGR strategy, injection timing and air-fuel ratio were optimised in such a way that good regeneration conditions were obtained across most of the engine operating map. Also transient EGR control is optimised to combine low NOx emission during the ETC with good driveability and good engine out particulates emission. The size of the oxidation catalyst in the CRT was investigated. It appeared that the larger oxidation catalyst showed a better regeneration performance during a low temperature duty-cycle. Negative aspects of a larger oxidation catalyst are increased costs and increased NO2 emission (because of the catalyst ability to oxidise more NO into NO2).
Technical Paper

A new test method for the assessment of neck injuries in rear-end collisions

2001-06-04
2001-06-0176
Whiplash injuries due to rear-end car collisions is one of the most aggravating traffic safety problems with serious implications for the European society. Yearly more than a million European citizens suffer neck injuries from rear-end car collisions, implying tremendous societal costs. Therefore the European Community has sponsored the European Whiplash project. The objective of this paper is to present a general overview of this project. Accident studies show the relevance of rear-impact- related whiplash injuries and representative rear impact conditions in which whiplash is likely to occur. For the development of a Rear Impact Dummy (RID) typical human responses to rear impact are needed and were obtained with human volunteer and Post Mortem Human Subject tests at low speeds. Accident reconstructions were performed in order to derive injury thresholds for the dummy.
Technical Paper

Engine Dynamometer and Vehicle Performance of a Urea SCR-System for Heavy-Duty Truck Engines

2002-03-04
2002-01-0286
The application of SCR deNOx aftertreatment was studied on two about 12 liter class heavy-duty diesel engines within a consortium project. Basically, the system consists of a dosage system for aqueous urea injection and a vanadia based SCR catalyst, without an upstream or downstream oxidation catalyst. The urea injection system for a DAF and a Renault V.I. (Véhicules Industriels) diesel engine was calibrated on the engine test bench taking into account dynamic effects of the catalyst. For both engine applications NOx reduction was 81% to 84% over the ESC and 72% over the ETC. CO emission increased up to 27%. PM emission is reduced by 4 to 23% and HC emission is reduced by more than 80%. These results are achieved with standard diesel fuel with about 350 ppm sulfur. The test engines and SCR deNOx systems were built into a DAF FT95 truck and a Renault V.I. Magnum truck.
Technical Paper

Development of a Model-Based Controller for a Three-Way Catalytic Converter

2002-03-04
2002-01-0475
The performance of a three-way catalytic converter under transient operation can be improved by controlling the level of oxygen stored on ceria at some optimal level. A model-based controller, with the model estimating the level of ceria coverage by oxygen, can achieve this goal. A simple, dynamic model is based on step responses of the converter and is used to train the controller off-line. The controller is a neuro-fuzzy approximation of a model predictive controller. Thus, it retains a high performance while being less computationally involving. The system performance has been experimentally tested by a specially designed, highly transient test cycle.
Technical Paper

Model-Based Approach for Calibration and Validation by Simulation of Emission Control Solutions for Next Generation Off-Road Vehicles

2011-04-12
2011-01-0309
The next generation off-road vehicles will see additional exhaust gas aftertreatment systems, ranging from DOC-SCR only to full DOC-DPF-SCR-AMOX systems. This will increase system complexity and development effort significantly. Emission requirements and the high number of vehicle configurations within the off-road industry will require a new process for development and validation. The introduced model-based approach using physical models of aftertreatment can reduce development effort and cost, improve performance robustness and help to identify performance issues early in the development process. A method to investigate and optimize a large matrix of variations by simulation is introduced. This can lead to a significant reduction in the number of required calibrations and can assist in the development of design specifications for the aftertreatment system. A case study for SCR calibration successfully demonstrates the potential of model-based development.
Technical Paper

Robust, Model-Based Urea Dosing Control for SCR Aftertreatment Systems using a Cross-Sensitive Tailpipe NOx Sensor

2017-03-28
2017-01-0938
This article describes a NOx sensor based urea dosing control strategy for heavy-duty diesel aftertreatment systems using Selective Catalytic Reduction. The dosing control strategy comprises of a fast-response, model-based ammonia storage control system in combination with a long-timescale tailpipe-feedback module that adjusts the dosing quantity according to current aftertreatment conditions. This results in a control system that is robust to system disturbances such as biased NOx sensors and variations in AdBlue concentrations. The cross-sensitivity of the tailpipe NOx sensor to ammonia is handled by a novel, smart signal filter that can reliably identify the contributions of NOx and NH3 in the tailpipe sensor signal, without requiring an artificial perturbation of the dosing signal.
Technical Paper

Variable Valve Actuation Strategies for Better Efficiency Load Range and Thermal Management in an RCCI Engine

2018-04-03
2018-01-0254
The Reactivity Controlled Compression Ignition concept for dual-fuel engines has multiple challenges of which some can be overcome using Variable Valve Actuation approaches. For various fuel combinations, the engine research community has shown that running dual-fuel engines in RCCI mode, improves thermal efficiency and results in ultra-low engine-out nitrous oxides and soot. However, stable RCCI combustion is limited to a certain load range, depending on available hardware. At low loads, the combustion efficiency can drop significantly, whereas at high loads, the maximum in-cylinder pressure can easily exceed the engine design limit. In this paper, three VVA measures to increase load range, improve combustion efficiency, and perform thermal management are presented. Simulation results are used to demonstrate the potential of these VVA measures for a heavy-duty engine running on natural gas and diesel.
Technical Paper

Experimental Validation of a Dynamic Waste Heat Recovery System Model for Control Purposes

2013-04-08
2013-01-1647
This paper presents the identification and validation of a dynamic Waste Heat Recovery (WHR) system model. Driven by upcoming CO₂ emission targets and increasing fuel costs, engine exhaust gas heat utilization has recently attracted much attention to improve fuel efficiency, especially for heavy-duty automotive applications. In this study, we focus on a Euro-VI heavy-duty diesel engine, which is equipped with a Waste Heat Recovery system based on an Organic Rankine Cycle. The applied model, which combines first principle modeling with stationary component models, covers the two-phase flow behavior and the effect of control inputs. Furthermore, it describes the interaction with the engine on both gas and drivetrain side. Using engine dynamometer measurements, an optimal fit of unknown model parameters is determined for stationary operating points.
Technical Paper

Evaluation of Accident Parameters in a Numerical Fleet for Assessing Compatibility

2005-04-11
2005-01-0707
On behalf of NHTSA, the European commission and the Dutch Ministry of Traffic and Transport, the Safety department of TNO Automotive is performing numerical fleet studies using multi-body vehicle models. Currently nine vehicle models are available, each of a different vehicle class, two vehicle models with a modified front-structure. The aim is to develop strategies for evaluation of front-end structures minimizing the total harm in car-to-car crashes on a fleet-wide basis in different accident scenarios. For these studies multi-body models were constructed from existing finite element models. Front-end structure and passenger cell were modeled in detail to provide realistic deformation modes. Furthermore dummies, airbags, belts and main interior parts like dashboard and steering wheel were included. To qualify the performance of the multi-body vehicle models for crashworthiness in an entire fleet, a study on offset frontal angled impacts was performed.
Technical Paper

Detailed Modelling of the Lumbar Spine for Investigation of Low Back Pain

2005-06-14
2005-01-2716
Comfort of car seats is becoming an increasingly important issue in the design of vehicles for professional use as well as for personal use. People using cars professionally, like drivers of taxis, trucks, and busses, often have to drive for prolonged periods sometimes leading to physical complaints, like e.g. low back pain. Apart from experimental investigations, virtual testing is becoming more important to get more insight in the problem of low back pain. This paper presents a finite element (FE) model of the lumbar spine (L1-L5). The model contains a detailed geometric description of the lumbar spine and realistic material properties. On a segmental level and as a whole, the model's response was verified for quasi-static and dynamic conditions based on experimental data published in literature. The quasi-static segmental validation comprised of compression, posterior, anterior and lateral shear, flexion and extension, lateral bending and axial torque.
Technical Paper

Engine Demonstration of Microwave Assisted Particulate Trap Regeneration

2005-05-11
2005-01-2141
In this study a microwave assisted particulate trap regeneration system has been developed. Microwave technology typically shows uneven temperature distribution in a trap. In this research an innovative technique is introduced: a so-called circular polarizer for generating a more even energy distribution in the trap. Experimental work has been performed on a 1.2 l TDI engine on an engine dynamometer. A cordierite wall-flow trap was located in the exhaust pipe. Experiments have been performed with variation of temperature at the start of regeneration, energy input duration and external combustion air flow. It has been observed that the exhaust gas flow of the engine, even at idle, is too high for maintaining propagating flame fronts. It can be concluded that microwave regeneration with a low-power microwave generator of about 1 kW must be applied in a multiple branch trap system or regeneration events must be applied in periods when the engine is not running.
Technical Paper

Towards Self-Learning Energy Management for Optimal PHEV Operation Around Zero Emission Zones

2022-03-29
2022-01-0734
Self-learning energy management is a promising concept, which optimizes real-world system performance by automated, on-line adaptation of control settings. In this work, the potential of self-learning capabilities related to optimization is studied for energy management in Plug-in Hybrid Electric Vehicles (PHEV). These vehicles are of great interest for the transport sector, since they combine high fuel efficiency with last mile full-electric driving. We focus on a specific use case: PHEV operation through future Zero Emission (ZE) zones of cities. As a first step towards self-learning control, we introduce a novel, adaptive supervisory controller that combines modular energy and emission management (MEEM) and deals with varying constraints and system uncertainty. This optimal control strategy is based on Pontryagin’s Minimum Principle and maximizes overall energy efficiency.
Technical Paper

A Novel Start Algorithm for CNG Engines Using Ion Sense Technology

2000-10-16
2000-01-2800
This paper presents a start algorithm that is able to control the air/fuel ratio (AFR) during the cranking phase and immediately hereafter, where the ordinary λ-control is not yet enabled. The control is based on the ion sense principle, which means that a current through the spark plug is measured directly after the spark has disappeared. This current is a measure for the temperature and therefore of the combustion in the cylinder. This is an excellent way to start a CNG (Compressed Natural Gas) engine with unknown gas qualities. A typical example of application is when the vehicle is almost out of fuel and is refueled at a motel stop. The small amount of old fuel that is left in the system will mix with the new fuel resulting in an unknown fuel quality. The control system shall then be able to start the engine directly or after an accommodation over night. During the last condition, the oxygen sensor is still cold and thus not able to correct for fuel quality changes.
X