Refine Your Search

Topic

Search Results

Journal Article

Impact of Fuel Sprays on In-Cylinder Flow Length Scales in a Spark-Ignition Direct-Injection Engine

2017-03-28
2017-01-0618
The interaction of fuel sprays and in-cylinder flow in direct-injection engines is expected to alter kinetic energy and integral length scales at least during some portions of the engine cycle. High-speed particle image velocimetry was implemented in an optical four-valve, pent-roof spark-ignition direct-injection single-cylinder engine to quantify this effect. Non-firing motored engine tests were performed at 1300 RPM with and without fuel injection. Two fuel injection timings were investigated: injection in early intake stroke represents quasi-homogenous engine condition; and injection in mid compression stroke mimics the stratified combustion strategy. Two-dimensional crank angle resolved velocity fields were measured to examine the kinetic energy and integral length scale through critical portions of the engine cycle. Reynolds decomposition was applied on the obtained engine flow fields to extract the fluctuations as an indicator for the turbulent flow.
Technical Paper

A Field Study of Distance Perception with Large-Radius Convex Rearview Mirrors

1998-02-23
980916
One of the primary reasons that FMVSS 111 currently requires flat rearview mirrors as original equipment on the driver's side of passenger cars is a concern that convex mirrors might reduce safety by causing drivers to overestimate the distances to following vehicles. Several previous studies of the effects of convex rearview mirrors have indicated that they do cause overestimations of distance, but of much lower magnitude than would be expected based on the mirrors' levels of image minification and the resulting visual angles experienced by drivers. Previous studies have investigated mirrors with radiuses of curvature up to 2000 mm. The present empirical study was designed to investigate the effects of mirrors with larger radiuses (up to 8900 mm). Such results are of interest because of the possible use of large radiuses in some aspheric mirror designs, and because of the information they provide about the basic mechanisms by which convex mirrors affect distance perception.
Technical Paper

Comparison of Diesel Oxidation Catalyst Performance on an Engine and a Gas Flow Reactor

2007-04-16
2007-01-0231
This paper analyzes and compares reactor and engine behavior of a diesel oxidation catalyst (DOC) in the presence of conventional diesel exhaust and low temperature premixed compression ignition (PCI) diesel exhaust. Surrogate exhaust mixtures of n-undecane (C11H24), ethene (C2H4), CO, O2, H2O, NO and N2 are defined for conventional and PCI combustion and used in the gas flow reactor tests. Both engine and reactor tests use a DOC containing platinum, palladium and a hydrocarbon storage component (zeolite). On both the engine and reactor, the composition of PCI exhaust increases light-off temperature relative to conventional combustion. However, while nominal conditions are similar, the catalyst behaves differently on the two experimental setups. The engine DOC shows higher initial apparent HC conversion efficiencies because the engine exhaust contains a higher fraction of trappable (i.e., high boiling point) HC.
Technical Paper

Algorithmic Maintenance of a Diesel Engine Electronic Fuel Feed Controller by Criterion of the Content of Soot in Exhaust Gas

2007-04-16
2007-01-0973
The feature of offered algorithm is that it allows, without record and analysis of the display diagram, to estimate a running cycle of a diesel engine parameters which characterize ecological and economic performances. The mathematical model described in report allows to determine connection of coefficient of filling, pressure and temperature of air boost, factor of excess of air with effectiveness ratio of combustion and contents of soot in exhaust gas and to take into account this connection at a choice initial data for control fuel feed or for elaboration of diesel engine dynamic model. The algorithm incorporated, for example, in the microcontroller of an electronic fuel feed controller allows analyzing the sensors data and theoretically determine of smoke amount in the exhaust gases for chosen cycle of fuel feed. The restriction of smoke is possible by criterion dD/dGT, where D - contents of soot in exhaust gas and GT - fuel cycle submission under the program-adaptive schema.
Technical Paper

Impact of Part Variation on In-Process Coordinate Measurements for Automotive Body Assemblies

1998-09-29
982273
Coordinate measurement gages dominate in the area of dimensional control and variation reduction of automotive body assembly processes. However, coordinate measurement gages do not have the capability to track certain measured features. This incapability introduces inherent measurement error created by part (feature) mislocation in constrained non-measured directions. This inherent measurement error weakens the methods used for process control and variation reduction. In this paper, a principle of measurement uncertainty is developed in order to estimate the measurement error caused by this deficiency. The developed principle describes measurement error, which is independent of any other error related to the mechanical or optical coordinate measurement machines (CMMs, OCMMs). Additionally, an error map determined by the measurement uncertainty principle is created for error compensation.
Technical Paper

Modeling of Diesel Combustion and NO Emissions Based on a Modified Eddy Dissipation Concept

2004-03-08
2004-01-0107
This paper reports the development of a model of diesel combustion and NO emissions, based on a modified eddy dissipation concept (EDC), and its implementation into the KIVA-3V multidimensional simulation. The EDC model allows for more realistic representation of the thin sub-grid scale reaction zone as well as the small-scale molecular mixing processes. Realistic chemical kinetic mechanisms for n-heptane combustion and NOx formation processes are fully incorporated. A model based on the normalized fuel mass fraction is implemented to transition between ignition and combustion. The modeling approach has been validated by comparison with experimental data for a range of operating conditions. Predicted cylinder pressure and heat release rates agree well with measurements. The predictions for NO concentration show a consistent trend with experiments. Overall, the results demonstrate the improved capability of the model for predictions of the combustion process.
Technical Paper

Is Toluene a Suitable LIF Tracer for Fuel Film Measurements?

2004-03-08
2004-01-1355
Quantitative LIF measurements of liquid fuel films on the piston of direct-injected gasoline engines are difficult to achieve because generally these films are thin and the signal strength is low. Additionally, interference from scattered laser light or background signal can be substantial. The selection of a suitable fluorescence tracer and excitation wavelength plays an important role in the success of such measurements. We have investigated the possibility of using toluene as a tracer for fuel film measurements and compare it to the use of 3-pentanone. The fuel film dynamics in a motored engine at different engine speeds, temperatures and in-cylinder swirl levels is characterized and discussed.
Technical Paper

Multi-Zone DI Diesel Spray Combustion Model for Cycle Simulation Studies of Engine Performance and Emissions

2001-03-05
2001-01-1246
A quasi-dimensional, multi-zone, direct injection (DI) diesel combustion model has been developed and implemented in a full cycle simulation of a turbocharged engine. The combustion model accounts for transient fuel spray evolution, fuel-air mixing, ignition, combustion and NO and soot pollutant formation. In the model, the fuel spray is divided into a number of zones, which are treated as open systems. While mass and energy equations are solved for each zone, a simplified momentum conservation equation is used to calculate the amount of air entrained into each zone. Details of the DI spray, combustion model and its implementation into the cycle simulation of Assanis and Heywood [1] are described in this paper. The model is validated with experimental data obtained in a constant volume chamber and engines. First, predictions of spray penetration and spray angle are validated against measurements in a pressurized constant volume chamber.
Technical Paper

Failure of Laser Welds in Aluminum Sheets

2001-03-05
2001-01-0091
In this paper, the formability of AA5754 aluminum laser-welded blanks produced by Nd:YAG laser welding is investigated under biaxial straining conditions. The mechanical behavior of the laser-welded blanks is first examined by uniaxial tensile tests conducted with the weld line perpendicular to the tensile axis. Shear failure in the weld metal is observed in the experiments. Finite element simulations under generalized plane strain conditions are then conducted in order to further understand the effects of weld geometry and strength on the shear failure and formability of these welded blanks. The strain histories of the material elements in the weld metal obtained from finite element computations are finally used in a theoretical failure analysis based on the material imperfection approach to predict the failure strains for the laser-welded blanks under biaxial straining conditions.
Technical Paper

Distance Perception in Camera-Based Rear Vision Systems

2002-03-04
2002-01-0012
The importance of eye-to-display distance for distance perception in rear vision may depend on the type of display. At least in terms of its influence on the effective magnification of images, eye-to-display distance is almost irrelevant for flat rearview mirrors, but it is important for convex rearview mirrors and for other displays, such as video displays, that create images closer to the driver than the actual objects of interest. In the experiment we report here, we investigate the influence of eye-to-display distance on distance perception with both flat rearview mirrors and camera-based video displays. The results indicate that a simple model of distance perception based on the visual angles of images is not very successful. Visual angles may be important, but it appears that relationships between images of distant objects and the frames of the displays are also important. Further work is needed to fully understand how drivers might judge distance in camera-based displays.
Technical Paper

Factors Influencing Spark Behavior in a Spray-Guided Direct-Injected Engine

2006-10-16
2006-01-3376
The spark process has previously been shown to heavily influence ignition stability, particularly in direct-injected gasoline engines. Despite this influence, few studies have addressed spark behavior in direct-injected engines. This study examines the role of environmental factors on the behavior of the spark. Through measurement of the spark duration, by way of the ignition current trace, several observations are made on the influence of external factors on the behavior of the spark. Changing the level of nitrogen in the cylinder (to simulate EGR), the level of wetting and velocity imparted by the spray, the ignition dwell time and the orientation of the ground strap, observations are made as to which conditions are likely to produce unfavorable (shorter) spark durations. Through collection of a statistically significant number of sample spark lengths under each condition, histograms have been assembled and compared under each case.
Technical Paper

A Multi-Variable High-Speed Imaging Study of Ignition Instabilities in a Spray-Guided Direct-Injected Spark-Ignition Engine

2006-04-03
2006-01-1264
Ignition stability was studied in an optical spray guided spark ignition direct injection engine. The impact of intake air dilution with nitrogen, spark plug orientation, ignition system dwell time, and fuel injector targeting was addressed. Crank angle resolved fuel distributions were measured with a high-speed planar laser-induced fluorescence technique for hundreds of consecutive cycles. IMEP, COV of IMEP, burn rates and spark energy delivered to the gas were examined and used in conjunction with the imaging data to identify potential reasons for misfires.
Technical Paper

Cam-phasing Optimization Using Artificial Neural Networks as Surrogate Models-Fuel Consumption and NOx Emissions

2006-04-03
2006-01-1512
Cam-phasing is increasingly considered as a feasible Variable Valve Timing (VVT) technology for production engines. Additional independent control variables in a dual-independent VVT engine increase the complexity of the system, and achieving its full benefit depends critically on devising an optimum control strategy. A traditional approach relying on hardware experiments to generate set-point maps for all independent control variables leads to an exponential increase in the number of required tests and prohibitive cost. Instead, this work formulates the task of defining actuator set-points as an optimization problem. In our previous study, an optimization framework was developed and demonstrated with the objective of maximizing torque at full load. This study extends the technique and uses the optimization framework to minimize fuel consumption of a VVT engine at part load.
Technical Paper

Framing Effects on Distance Perception in Rear-Vision Displays

2003-03-03
2003-01-0298
The increasing availability of camera-based displays for indirect vision in vehicles is providing new opportunities to supplement drivers' direct views of the roadway and surrounding traffic, and is also raising new issues about how drivers perceive the positions and movements of surrounding vehicles. We recently reported evidence that drivers' perception of the distance to rearward vehicles seen in camera-based displays is affected not only by the visual angles subtended by the images of those vehicles, but also by the sizes of those images relative to the sizes of the displays within which they are seen (an influence that we have referred to as a framing effect). There was also evidence for a similar, but weaker, effect with rearview mirrors.
Technical Paper

A Pilot Study of the Effects of Vertical Ride Motion on Reach Kinematics

2003-03-03
2003-01-0589
Vehicle motions can adversely affect the ability of a driver or occupant to quickly and accurately push control buttons located in many advanced vehicle control, navigation and communications systems. A pilot study was conducted using the U.S. Army Tank Automotive and Armaments Command (TACOM) Ride Motion Simulator (RMS) to assess the effects of vertical ride motion on the kinematics of reaching. The RMS was programmed to produce 0.5 g and 0.8 g peak-to-peak sinusoidal inputs at the seat-sitter interface over a range of frequencies. Two participants performed seated reaching tasks to locations typical of in-vehicle controls under static conditions and with single-frequency inputs between 0 and 10 Hz. The participants also held terminal reach postures during 0.5 to 32 Hz sine sweeps. Reach kinematics were recorded using a 10-camera VICON motion capture system. The effects of vertical ride motion on movement time, accuracy, and subjective responses were assessed.
Technical Paper

Hydrocarbon Emission Sequence Related to Cylinder Mal-Distribution in a L-Head Engine

1994-03-01
940305
The distribution of fuel-air mixtures in many L-head engines is not homogeneous. If local mixture is too rich or lean, incomplete combustion occurs. This can play a major role in unburned hydrocarbon and carbon monoxide emissions. Fuel-air mixture distribution depends on in-cylinder swirl and turbulence and is directly related to intake manifold configuration, fuel delivery system design and combustion chamber shape. Understanding the spatial mixture distribution may help improve the design of these aforementioned components. Consequently, a more complete combustion process may result, and emissions reduced. A method that measures the emission of CH and C2 radicals via the use of an optical fiber bundle was used in this research to map the mixture uniformity in the combustion chamber. The intensity ratio (IC2/ICH) was correlated to the fuel-air equivalence ratio. The mixture distribution measured was then correlated with the hydrocarbon emission sequence.
Technical Paper

The Effect of Vehicle Exhaust System Components on Flow Losses and Noise in Firing Spark-Ignition Engines

1995-05-01
951260
Sound attenuation and flow loss reduction are often two competing demands in vehicle breathing systems. The present study considers a full vehicle exhaust system and investigates both the sound attenuation and the flow performance of production configurations including the catalyst, the resonator, and the muffler. Dynamometer experiments have been conducted with a firing Ford 3.0L, V-6 engine at wide-open throttle with speeds ranging from 1000 to 5000 rpm. Measurements including the flow rates, the temperatures and the absolute dynamic pressures of the hot exhaust gases at key locations (upstream and downstream of every component) with fast-response, water-cooled piezo-resistive pressure transducers facilitate the calculation of acoustic performance of each component, as well as the determination of flow losses caused by these elements and their influence on the engine performance.
Technical Paper

Assessment of Alternative Strategies for Reducing Hydrocarbon and Carbon Monoxide Emissions from Small Two-Stroke Engines

1996-02-01
960743
Five small two-stroke engine designs were tested at different air/fuel ratios, under steady state and transient cycles. The effects of combustion chamber design, carburetor design, lean burning, and fuel composition on performance, hydrocarbon and carbon monoxide emissions were studied. All tested engines had been designed to run richer than stoichiometric in order to obtain satisfactory cooling and higher power. While hydrocarbon and carbon monoxide emissions could be greatly reduced with lean burning, engine durability would be worsened. However, it was shown that the use of a catalytic converter with acceptably lean combustion was an effective method of reducing emissions. Replacing carburetion with in-cylinder fuel injection in one of the engines resulted in a significant reduction of hydrocarbon and carbon monoxide emissions.
Technical Paper

Analysis and Redesign of Battery Handling using Jack™ and HUMOSIM Motions

2004-06-15
2004-01-2145
The evaluation of maintenance tasks is increasingly important in the design and redesign of many industrial operations including vehicles. The weight of subsystems can be extreme and often tools are developed to abate the ergonomic risks commonly associated with such tasks, while others are unfortunately overlooked. We evaluated a member of the family of medium-sized tactical vehicles (FMTV) and chose the battery handling from a list of previously addressed concerns regarding the vehicle. Particularly in larger vehicles, similar to those analyzed in this paper, batteries may exceed 35 kg (77 lbs). The motions required to remove these batteries were simulated using motion prediction modules from the Human Motion Simulation (HUMOSIM) laboratory at the University of Michigan. These motions were visualized in UGS PLM Solutions' Jack™ and analyzed with the embedded 3-D Static Strength Prediction program.
Technical Paper

Strength and Balance Guided Posture Selection during a Battery Maintenance Task

2006-04-03
2006-01-0698
Posture selection during standing exertions is a complex process involving tradeoffs between muscle strength and balance. Bodyweight utilization reduces the amount of upper-body strength required to perform a high force push/pull exertion but shifts the center-of-gravity towards the limits of the functional stability region. Thus balance constraints limit the extent to which bodyweight can be used to generate push/pull forces. This paper examines a two-handed sagittal plane pulling exertion performed during a battery maintenance task on a member of the family of medium-sized tactical vehicles (FMTV). Percent capable strength predictions and functional balance capabilities were determined for various two-handed pulling postures using the University of Michigan's 3D Static Strength Prediction Program (3DSSPP). Through this simulation study, preferred postures that minimize joint torques while maintaining balance were identified.
X