Refine Your Search

Topic

Author

Search Results

Technical Paper

Effect of Battery Temperature on Fuel Economy and Battery Aging When Using the Equivalent Consumption Minimization Strategy for Hybrid Electric Vehicles

2020-04-14
2020-01-1188
Battery temperature variations have a strong effect on both battery aging and battery performance. Significant temperature variations will lead to different battery behaviors. This influences the performance of the Hybrid Electric Vehicle (HEV) energy management strategies. This paper investigates how variations in battery temperature will affect Lithium-ion battery aging and fuel economy of a HEV. The investigated energy management strategy used in this paper is the Equivalent Consumption Minimization Strategy (ECMS) which is a well-known energy management strategy for HEVs. The studied vehicle is a Honda Civic Hybrid and the studied battery, a BLS LiFePO4 3.2Volts 100Ah Electric Vehicle battery cell. Vehicle simulations were done with a validated vehicle model using multiple combinations of highway and city drive cycles. The battery temperature variation is studied with regards to outside air temperature.
Technical Paper

Study on Combustion Information Feedback Based on the Combination of Virtual Model and Actual Angular Velocity Measurement

2020-04-14
2020-01-1151
Combustion closed-loop control is now being studied intensively for engineering applications to improve fuel economy. Currently, combustion closed-loop feedback control is usually based on the cylinder pressure signal, which is the most direct and exact signal that reflects engine working process. Although there were some relatively cheap types of in-cylinder pressure sensors, cylinder pressure sensors have not been widely applied because of their high price now. Moreover, the combustion analysis based on cylinder pressure imposes high requirements on the information acquisition capability of the current ECU, such as high acquisition and analog-digital conversion frequency and so on. For developing a low price and feasible technology, a new engine information feedback method based on model calculation and crank angular velocity measurement was proposed. A simplified combustion model was operated in ECU for the real-time calculation of cylinder pressure and combustion parameters.
Journal Article

Analysis and Control of a Torque Blended Hybrid Electric Powertrain with a Multi-Mode LTC-SI Engine

2017-03-28
2017-01-1153
Low Temperature Combustion (LTC) engines are promising to improve powertrain fuel economy and reduce NOx and soot emissions by improving the in-cylinder combustion process. However, the narrow operating range of LTC engines limits the use of these engines in conventional powertrains. The engine’s limited operating range can be improved by taking advantage of electrification in the powertrain. In this study, a multi-mode LTC-SI engine is integrated with a parallel hybrid electric configuration, where the engine operation modes include Homogeneous Charge Compression Ignition (HCCI), Reactivity Controlled Compression Ignition (RCCI), and conventional Spark Ignition (SI). The powertrain controller is designed to enable switching among different modes, with minimum fuel penalty for transient engine operations.
Journal Article

The Effects of EGR and Injection Timing on the Engine Combustion and Emission Performances Fueled by Butanol-Diesel Blends

2012-04-01
2011-01-2473
The combustion and emission characteristics of a diesel engine running on butanol-diesel blends were investigated in this study. The blending ratio of n-butanol to diesel was varied from 0 to 40 vol% using an increment of 10 vol%, and each blend was tested on a 2.7 L V6 common rail direction injection diesel engine equipped with an EGR system. The test was carried out under two engine loads at a constant engine speed, using various combinations of EGR ratios and injection timings. Test results indicate that n-butanol addition to engine fuel is able to substantially decrease soot emission from raw exhaust gas, while the change in NOx emissions varies depending on the n-butanol content and engine operating conditions. Increasing EGR ratio and retarding injection timing are effective approaches to reduce NOx emissions from combustion of n-butanol-diesel blends.
Technical Paper

Optimization of an Asynchronous Fuel Injection System in Diesel Engines by Means of a Micro-Genetic Algorithm and an Adaptive Gradient Method

2008-04-14
2008-01-0925
Optimal fuel injection strategies are obtained with a micro-genetic algorithm and an adaptive gradient method for a nonroad, medium-speed DI diesel engine equipped with a multi-orifice, asynchronous fuel injection system. The gradient optimization utilizes a fast-converging backtracking algorithm and an adaptive cost function which is based on the penalty method, where the penalty coefficient is increased after every line search. The micro-genetic algorithm uses parameter combinations of the best two individuals in each generation until a local convergence is achieved, and then generates a random population to continue the global search. The optimizations have been performed for a two pulse fuel injection strategy where the optimization parameters are the injection timings and the nozzle orifice diameters.
Technical Paper

Powersplit Hybrid Electric Vehicle Control with Electronic Throttle Control (ETC)

2003-10-27
2003-01-3280
This paper analyzes the control of the series-parallel powersplit used in the 2001 Michigan Tech FutureTruck. An electronic throttle controller is implemented and a new control algorithm is proposed and tested. A vehicle simulation has been created in MATLAB and the control algorithm implemented within the simulation. A program written in C has also been created that implements the control algorithm in the test vehicle. The results from both the simulation and test vehicle are presented and discussed and show a 15% increase in fuel economy. With the increase in fuel economy, and through the use of the original exhaust after treatment, lower emissions are also expected.
Technical Paper

Design and Development of the 2002 Michigan Tech FutureTruck, a Parallel Hybrid Electric Vehicle

2003-03-03
2003-01-1257
In this paper, the conversion of a production sport utility vehicle (SUV) to a hybrid electric vehicle utilizing a through-the-road parallel hybrid configuration is presented. The uniqueness of this design comes from its ability to decouple the front and rear drivetrain to simplify the packaging of underbody components. The Hybrid Theory utilizes a 2.0L, 4-cylinder engine that supplies 101kW (135hp) to the front wheels and a DC motor that supplies an additional 53kW (70hp) to the rear wheels to achieve the competition goals of a 25% improvement in fuel economy, a reduction in Green House Gas (GHG) emissions, as well as maintaining stock performance. The effects on drivability, manufacturing, fuel economy, emissions, and performance are presented along with the design, selection, and implementation of all of the vehicle conversion components.
Technical Paper

Investigation on Cylinder Bore Deformation under Static Condition Based on Fourier Decomposition

2017-03-28
2017-01-0366
Due to the mechanical forces under static conditions, the engine cylinders cross section will not be a round circle any more once they are installed. The deformation of an engine cylinder causes increasing lubricating oil consumption and abnormal wear, resulting in worse fuel economy and emissions. However, prediction of deformation on a liner has not been made because of the complication of conditions and structure. In this study, a V6-type engine body model was built and meshed with Hypermesh suit software. Then, cylinder deformation under static condition has been simulated and analyzed. First of all, experimental work was done to verify the engine model. Basically, few parameters like pre-tightened force, structure and distribution of bolts have been investigated to figure out how the cylinder bore deformation behaves via finite element analysis. Also, a simple Matlab program was developed to process the data.
Technical Paper

A Numerical Study on Combustion and Emission Characteristics of Marine Engine through Miller Cycle Coupled with EGR and Water Emulsified Fuel

2016-10-17
2016-01-2187
The combustion in low-speed two-stroke marine diesel engines can be characterized as large spatial and temporal scales combustion. One of the most effective measures to reduce NOx emissions is to reduce the local maximum combustion temperature. In the current study, multi-dimensional numerical simulations have been conducted to explore the potential of Miller cycle, high compression ratio coupled with EGR (Exhaust Gas Recirculation) and WEF (water emulsified fuel) to improve the trade-off relationship of NOx-ISFC (indicated specific fuel consumption) in a low-speed two-stroke marine engine. The results show that the EGR ratio could be reduced combined with WEF to meet the Tier III emission regulation. The penalty on fuel consumption with EGR and WEF could be offset by Miller cycle and high geometric compression ratio.
Technical Paper

Effects of Different Turbocharging Systems on Performance in a HD Diesel Engine with Different Emission Control Technical Routes

2016-10-17
2016-01-2185
In this work, both the ‘SCR-only’ and ‘EGR+SCR’ technical routes are compared and evaluated after the optimizations of both injection strategy and turbocharging system over the World Harmonized Stationary Cycle (WHSC) in a heavy duty diesel engine. The exhaust emissions and fuel economy performance of different turbocharging systems, including wastegate turbocharger (WGT), variable geometry turbocharger (VGT), two-stage fixed geometry turbocharger (WGT+FGT) and two-stage variable geometry turbocharger (VGT+FGT), are investigated over a wide EGR range. The NOx reduction methods and EGR introduction strategies for different turbocharger systems are proposed to improve the fuel economy. The requirement on turbocharging system and their potential to meet future stringent NOx and soot emission regulations are also discussed in this paper.
Technical Paper

Numerical Analysis of Scavenging Process in a Large Marine Two-Stroke Diesel Engine

2017-10-08
2017-01-2201
For uniflow scavenged two-stroke marine diesel engines, the main function of scavenging process is to replace the burned gas with fresh charge. The end state of scavenging process is integral to the subsequent compression and combustion, thereby affecting the engine’s fuel economy, power output and emissions. In this paper, a complete working cycle of a large marine diesel engine was simulated by using the 3D-CFD software CONVERGE. The model was validated by mesh sensitivity test and experiment data. Based on this calibrated model, the influences of swirl ratio and exhaust valve closing (EVC) timing on the scavenging process were investigated. The parameters evaluating the performance of scavenging process were introduced. The results show that, by adjusting the swirl orientation angle(SOA) from SOA=10° to SOA=30°, different swirl ratios are generated and have obvious differences in flow characteristics and scavenging performance.
Technical Paper

Study on Dynamic Characteristics of High-Speed Solenoid Injectors by Means of Contactless Measurement

2017-10-08
2017-01-2313
In-cylinder direct-injected technology provides a flexible and accurate optimization for internal combustion engines to reduce emission and improve fuel efficiency. With increasingly stringent requirements for the emissions of nitrogen oxides (NOx) and CO2, the content of injections in an engine combustion cycle has reached 7 to 9 times in gasoline direct injection (GDI) and the diesel engine with high-pressure common rail (HPCR). Accurate control of both time and quantity of injection is critical for engine performance and emissions, while the dynamic response of injector spray characteristics is a key factor. In this paper, a test bench was built for monitoring the dynamic response of solenoid injectors with high-speed micro-photography and synchronous current collection system. Experimental studies on the dynamic response of GDI and HPCR solenoid injectors were carried out.
Technical Paper

Effects of EGR on PN Emissions under Operating Parameters from DISI Engines

2017-10-08
2017-01-2399
Particulate matter emissions have become a concern for the development of DISI engines. EGR has been extensively demonstrated as a beneficial technology to migrate knock performance, improve fuel economy and reduce NOX emissions. Recently, the effect of EGR on particulate matter emissions is attracting increased attention. This work investigates the effects of EGR on PN emissions with the variations of engine operating parameters and aims to understand the role of EGR in PN emissions for DISI engines. A 1.8liter turbocharged engine with cooled EGR is used for this study. The engine is operated at steady-state conditions with EGR under various operating parameters including injection timing, excess air ratio, and spark timing to characterize the particle number emissions. The results indicates that there is a high sensitivity of PN emissions to EGR with the variations of those parameters.
Technical Paper

Nonlinear Model Predictive Control of a Power-Split Hybrid Electric Vehicle with Electrochemical Battery Model

2017-03-28
2017-01-1252
This paper studies the nonlinear model predictive control for a power-split Hybrid Electric Vehicle (HEV) power management system to improve the fuel economy. In this paper, a physics-based battery model is built and integrated with a base HEV model from Autonomie®, a powertrain and vehicle model architecture and development software from Argonne National Laboratory. The original equivalent circuit battery model from the software has been replaced by a single particle electrochemical lithium ion battery model. A predictive model that predicts the driver’s power request, the battery state of charge (SOC) and the engine fuel consumption is studied and used for the nonlinear model predictive controller (NMPC). A dedicated NMPC algorithm and its solver are developed and validated with the integrated HEV model. The performance of the NMPC algorithm is compared with that of a rule-based controller.
Technical Paper

A Hybrid Combustion Control Strategy for Heavy Duty Diesel Engines Based on the Technologies of Multi-Pulse Injections, Variable Boost Pressure and Retarded Intake Valve Closing Timing

2011-04-12
2011-01-1382
Combustion control strategy for high efficiency and low emissions in a heavy duty (H D) diesel engine was investigated experimentally in a single cylinder test engine with a common rail fuel system, EGR (Exhaust Gas Recirculation) system, boost system and retarded intake valve closing timing actuator. For the operation loads of IMEPg (Gross Indicated Mean Effective Pressure) less than 1.1 MPa the low temperature combustion (LTC) with high rate of EGR was applied. The fuel injection modes of either single injection or multi-pulse injections, boost pressure and retarded intake valve closing timing (RIVCT) were also coupled with the engine operation condition loads for high efficiency and low emissions. A higher boost pressure played an important role in improving fuel efficiency and obtaining ultra-low soot and NOx emissions.
Technical Paper

Spark Ignited Direct Injection Natural Gas Combustion in a Heavy Duty Single Cylinder Test Engine - Nozzle Included Angle Effects

2017-03-28
2017-01-0781
The increased availability of natural gas (NG) in the United States (US) and its relatively low cost versus diesel fuel has increased interest in the conversion of medium duty (MD) and heavy duty (HD) engines to NG fueled combustion systems. The aim for development for these NG engines is to realize fuel cost savings and increase operating range while reduce harmful emissions and maintaining durability. Traditionally, port-fuel injection (PFI) or premixed NG spark-ignited (SI) combustion systems have been used for light duty LD, and MD engines with widespread use in the US and Europe [1]. However, this technology exhibits poor thermal efficiency and is load limited due to knock phenomenon that has prohibited its use for HD engines. Spark Ignited Direct Injection (SIDI) can be used to create a partially stratified combustion (PSC) mixture of NG and air during the compression stroke.
Technical Paper

Potentials of External Exhaust Gas Recirculation and Water Injection for the Improvement in Fuel Economy of a Poppet Valve 2-Stroke Gasoline Engine Equipped with a Two-Stage Serial Charging System

2018-04-03
2018-01-0859
Engine downsizing is one of the most effective means to improve the fuel economy of spark ignition (SI) gasoline engines because of lower pumping and friction losses. However, the occurrence of knocking combustion or even low-speed pre-ignition at high loads is a severe problem. One solution to significantly increase the upper load range of a 4-stroke gasoline engine is to use 2-stroke cycle due to the double firing frequency at the same engine speed. It was found that a 0.7 L two-cylinder 2-stroke poppet valve gasoline engine equipped with a two-stage serial boosting system, comprising a supercharger and a downstream turbocharger, could replace a 1.6 L naturally aspirated 4-stroke gasoline engine in our previous research, but its fuel economy was close to that of the 4-stroke engine at upper loads due to knocking combustion.
Technical Paper

Correlations of Non-Vaporizing Spray Penetration for 3000 Bar Diesel Spray Injection

2013-09-08
2013-24-0033
Increasing fuel injection pressure has enabled reduction of diesel emissions while retaining the advantage of the high thermal efficiency of diesel engines. With production diesel injectors operating in the range from 300 to 2400 bar, there is interest in injection pressures of 3000 bar and higher for further emissions reduction and fuel efficiency improvements. Fundamental understanding of diesel spray characteristics including very early injection and non-vaporizing spray penetration is essential to improve model development and facilitate the integration of advanced injection systems with elevated injection pressure into future diesel engines. Studies were conducted in an optically accessible constant volume combustion vessel under non-vaporizing conditions. Two advanced high pressure multi-hole injectors were used with different hole diameters, number of holes, and flow rates, with only one plume of each injector being imaged to enable high frame rate imaging.
Technical Paper

Effect of State of Charge Constraints on Fuel Economy and Battery Aging when Using the Equivalent Consumption Minimization Strategy

2018-04-03
2018-01-1002
Battery State of Charge (SOC) constraints are used to prevent the battery in Hybrid Electric Vehicles (HEVs) from over-charging or over-discharging. These constraints strongly influence the power-split of the HEV. This paper presents results on how Battery State of Charge (SOC) constraints effects Lithium ion battery aging and fuel economy when using the Equivalent Consumption Minimization Strategy (ECMS). The vehicle studied is the Honda Civic Hybrid. The battery used is A123 Systems’ ANR26650 battery cell. Vehicle simulation uses multiple combinations of highway and city drive cycles. For each combination of drive cycles, nine SOC constraints ranges are used. Battery aging is evaluated using a semi-empirical model combined with the accumulated Ah-throughput method which uses, as an input, the battery SOC trajectory from the vehicle simulations. The simulation results provide insight into how SOC constraints effect fuel economy as well as battery aging.
Technical Paper

A Study of the Vapor- and Particle-Phase Sulfur Species in the Heavy-Duty Diesel Engine EGR Cooler

1998-05-04
981423
To meet future NO, heavy-duty diesel emissions standards, exhaust gas recirculation (EGR) technology is likely to be used. To improve fuel economy and further lower emissions, the recirculated exhaust gas needs to be cooled, with the possibility that cooling of the exhaust gas may form sulfuric acid condensate in the EGR cooler. This corrosive condensate can cause EGR cooler failure and consequentially result in severe damage to the engine. Both a literature review and a preliminary experimental study were conducted. In this study, a manually controlled EGR system was installed on a 1995 Cummins Ml l-330E engine which was operated at EPA mode 9* (1800 rpm and 75% load). The Goksoyr-Ross method (1)** was used to measure the particle-phase sulfate and vapor-phase H2SO4 and SO2 at the inlet and outlet locations of the EGR cooler, obtaining H2SO4 and SO2 concentrations. About 0.5% of fuel sulfur in the EGR cooler was in the particle-phase.
X