Refine Your Search

Topic

null

Search Results

Journal Article

UV-visible Optical Characterization of the Early Combustion Stage in a DISI Engine Fuelled with Butanol-Gasoline Blend

2013-10-14
2013-01-2638
Detailed experimental information on the early stages of spark ignition process represent a substantial part for guiding the development of engines with higher efficiencies and reduced pollutant emissions. Flame kernel formation influences strongly combustion development inside the cylinder, especially for a direct injection spark ignition engine. This study presents the analysis of the evolution of spark-ignited flame kernels with detailed view upon cycle-to-cycle variations. Experiments are performed in a SI optical engine equipped with the cylinder head and injection system of a commercial turbocharged engine. Blend of commercial gasoline and butanol (40% by volume) is tested at stoichiometric and lean mixture conditions. Experiments are carried out at 2000 rpm through conventional tests (based on in-cylinder pressure measurements and exhaust emission analysis) and through optical diagnostics. In particular, UV-visible digital imaging and natural emission spectroscopy are applied.
Journal Article

Split Injection in a DISI Engine Fuelled with Butanol and Gasoline Analyzed through Integrated Methodologies

2015-04-14
2015-01-0748
In this study, experiments were carried out in an optical single-cylinder Direct Injection Spark Ignition engine fuelled with n-butanol and gasoline, alternatively. The engine is equipped with the head of a commercial turbocharged engine with similar geometrical specifications (bore, stroke, compression ratio). The head has four valves and a centrally located spark device with surface charge ignition. A conventional elongated hollow Bowditch piston is used and an optical crown, accommodating fused-silica window, is screwed onto it. The injector is side mounted and features 6 holes oriented to guide the jets towards the piston crown. During the experimental activity, the injection pressure was maintained at 100 bar for all conditions; the injection timing and the number of injections were adjusted to investigate their influence on combustion and emissions.
Technical Paper

Modeling of Soot Deposition and Active Regeneration in Wall-flow DPF and Experimental Validation

2020-09-15
2020-01-2180
Growing concerns about the emissions of internal combustion engines have forced the adoption of aftertreatment devices to reduce the adverse impact of diesel engines on health and environment. Diesel particulate filters are considered as an effective means to reduce the particle emissions and comply with the regulations. Research activity in this field focuses on filter configuration, materials and aging, on understanding the variation of soot layer properties during time, on defining of the optimal strategy of DPF management for on-board control applications. A model was implemented in order to simulate the filtration and regeneration processes of a wall-flow particulate filter, taking into account the emission characteristic of the engine, whose architecture and operating conditions deeply affect the size distribution of soot particles.
Journal Article

Experimental Evaluation of an Advanced Ignition System for GDI Engines

2015-09-06
2015-24-2520
A plasma ignition system was tested in a GDI engine with the target of combustion efficiency improvement without modifying engine configuration. The plasma was generated by spark discharge and successively sustained to enhance its duration up to 4 ms. The innovative ignition system was tested in an optically accessible single-cylinder DISI engine to investigate the effects of plasma on kernel stability and flame front propagation under low loads and lean mixture (λ≅1.3). The engine was equipped with the head of a commercial turbocharged engine with similar geometrical specifications (bore, stroke, compression ratio). All experiments were performed at 2000 rpm and 100 bar injection pressure. UV-visible 2D chemiluminescence was applied in order to study the flame front inception and propagation with particular interest in the early combustion stages. A bandpass filter allowed selecting luminous signal due to OH radicals.
Journal Article

Numerical Simulation and Flame Analysis of Combustion and Knock in a DISI Optically Accessible Research Engine

2017-03-28
2017-01-0555
The increasing limitations in engine emissions and fuel consumption have led researchers to the need to accurately predict combustion and related events in gasoline engines. In particular, knock is one of the most limiting factors for modern SI units, severely hindering thermal efficiency improvements. Modern CFD simulations are becoming an affordable instrument to support experimental practice from the early design to the detailed calibration stage. To this aim, combustion and knock models in RANS formalism provide good time-to-solution trade-off allowing to simulate mean flame front propagation and flame brush geometry, as well as “ensemble average” knock tendency in end-gases. Still, the level of confidence in the use of CFD tools strongly relies on the possibility to validate models and methodologies against experimental measurements.
Journal Article

Development of a RANS-Based Knock Model to Infer the Knock Probability in a Research Spark-Ignition Engine

2017-03-28
2017-01-0551
Engine knock is one of the most limiting factors for modern Spark-Ignition (SI) engines to achieve high efficiency targets. The stochastic nature of knock in SI units hinders the predictive capability of RANS knock models, which are based on ensemble averaged quantities. To this aim, a knock model grounded in statistics was recently developed in the RANS formalism. The model is able to infer a presumed log-normal distribution of knocking cycles from a single RANS simulation by means of transport equations for variances and turbulence-derived probability density functions (PDFs) for physical quantities. As a main advantage, the model is able to estimate the earliest knock severity experienced when moving the operating condition into the knocking regime.
Journal Article

A Modeling Study of Cyclic Dispersion Impact on Fuel Economy for a Small Size Turbocharged SI Engine

2016-10-17
2016-01-2230
In this paper, the results of an extensive experimental analysis regarding a twin-cylinder spark-ignition turbocharged engine are employed to build up an advanced 1D model, which includes the effects of cycle-by-cycle variations (CCVs) on the combustion process. Objective of the activity is to numerically estimate the CCV impact primarily on fuel consumption and knock behavior. To this aim, the engine is experimentally characterized in terms of average performance parameters and CCVs at high and low load operation. In particular, both a spark advance and an air-to-fuel ratio (α) sweep are actuated. Acquired pressure signals are processed to estimate the rate of heat release and the main combustion events. Moreover, the Coefficient of Variation of IMEP (CoVIMEP) and of in-cylinder peak pressure (CoVpmax) are evaluated to quantify the cyclic dispersion and identify its dependency on peak pressure position.
Journal Article

CFD Analysis of Combustion and Knock in an Optically Accessible GDI Engine

2016-04-05
2016-01-0601
The occurrence of knock is the most limiting hindrance for modern Spark-Ignition (SI) engines. In order to understand its origin and move the operating condition as close as possible to onset of this potentially harmful phenomenon, a joint experimental and numerical investigation is the most recommended approach. A preliminary experimental activity was carried out at IM-CNR on a 0.4 liter GDI unit, equipped with a flat transparent piston. The analysis of flame front morphology allowed to correlate high levels of flame front wrinkling and negative curvature to knock prone operating conditions, such as increased spark timings or high levels of exhaust back-pressure. In this study a detailed CFD analysis is carried out for the same engine and operating point as the experiments. The aim of this activity is to deeper investigate the reasons behind the main outcomes of the experimental campaign.
Journal Article

Water Injection: a Technology to Improve Performance and Emissions of Downsized Turbocharged Spark Ignited Engines

2017-09-04
2017-24-0062
Knock occurrence and fuel enrichment, which is required at high engine speed and load to limit the turbine inlet temperature, are the major obstacles to further increase performance and efficiency of down-sized turbocharged spark ignited engines. A technique that has the potential to overcome these restrictions is based on the injection of a precise amount of water within the mixture charge that can allow to achieve important benefits on knock mitigation, engine efficiency, gaseous and noise emissions. One of the main objectives of this investigation is to demonstrate that water injection (WI) could be a reliable solution to advance the spark timing and make the engine run at leaner mixture ratios with strong benefits on knock tendency and important improvement on fuel efficiency.
Technical Paper

Experimental and 1D Numerical Investigations on the Exhaust Emissions of a Small Spark Ignition Engine Considering the Cylinder-by-Cylinder Variability

2020-04-14
2020-01-0578
This paper reports a numerical and experimental analysis on a twin-cylinder turbocharged Spark Ignition engine carried out to investigate the cylinder-to-cylinder variability in terms of performance, combustion evolution and exhaust emissions. The engine was tested at 3000 rpm in 20 different steady-state operating conditions, selected with the purpose of observing the influence of cylinder-by-cylinder A/F ratio variations and the EGR effects on the combustion process and exhaust emissions for low to medium/high loads. The experimental outcomes showed relevant differences in the combustion evolution (characteristic combustion angles) between cylinders and not negligible variations in the emissions of the single cylinder exhaust and the overall engine one. This misalignment resulted to be due to differences in the injected fuel amount by the port injectors in the two cylinders, mainly deriving from the specific fuel rail geometry.
Technical Paper

Development of a Sectional Soot Model Based Methodology for the Prediction of Soot Engine-Out Emissions in GDI Units

2020-04-14
2020-01-0239
With the aim of identifying technical solutions to lower the particulate matter emissions, the engine research community made a consistent effort to investigate the root causes leading to soot formation. Nowadays, the computational power increase allows the use of advanced soot emissions models in 3D-CFD turbulent reacting flows simulations. However, the adaptation of soot models originally developed for Diesel applications to gasoline direct injection engines is still an ongoing process. A limited number of studies in literature attempted to model soot produced by gasoline direct injection engines, obtaining a qualitative agreement with the experiments. To the authors’ best knowledge, none of the previous studies provided a methodology to quantitatively match particulate matter, particulate number and particle size distribution function measured at the exhaust without a case-by-case soot model tuning.
Journal Article

Optical Diagnostics of the Pollutant Formation in a CI Engine Operating with Diesel Fuel Blends

2011-06-09
2011-37-0003
To meet the future stringent emission standards, innovative diesel engine technology, exhaust gas after-treatment, and clean alternative fuels are required. Oxygenated fuels have showed a tendency to decrease internal combustion engine emissions. In the same time, advanced fuel injection modes can promote a further reduction of the pollutants at the exhaust without penalty for the combustion efficiency. One of the more interesting solutions is provided by the premixed low temperature combustion (LTC) mechanism jointly to lower-cetane, higher-volatility fuels. In this paper, to understand the role played by these factors on soot formation, cycle resolved visualization, UV-visible optical imaging and visible chemiluminescence were applied in an optically accessed high swirl multi-jets compression ignition engine. Combustion tests were carried out using three fuels: commercial diesel, a blend of 80% diesel with 20% gasoline (G20) and a blend of 80% diesel with 20% n-butanol (BU20).
Journal Article

Influence of Engine Speed and Injection Phasing on Lean Combustion for Different Dilution Rates in an Optically Accessible Wall-Guided Spark Ignition Engine

2018-04-03
2018-01-1421
Alternative combustion control in the form of lean operation offers significant advantages such as high efficiency and “clean” fuel oxidation. Maximum dilution rates are limited by increasing instability that can ultimately lead to partial burning or even misfires. A compromise needs to be reached between high tumble-turbulence levels that “speed-up” combustion and the inherent stochastic nature of this fluid motion. The present study is focused on gaining improved insight into combustion characteristics through thermodynamic analysis and flame imaging, in a wall-guided direct injection spark ignition engine with optical accessibility. Engine speed values were investigated in the range of 1000 to 2000 rpm, with commercial gasoline fueling, in wide open throttle conditions; mixture strength ranged from stoichiometric, down to the equivalence ratios that allowed acceptable cycle-by-cycle variations; and all cases featured spark timing close to the point of maximum brake torque.
Journal Article

Numerical Simulation of Gasoline and n-Butanol Combustion in an Optically Accessible Research Engine

2017-03-28
2017-01-0546
Conventional fossil fuels are more and more regulated in terms of both engine-out emissions and fuel consumption. Moreover, oil price and political instabilities in oil-producer countries are pushing towards the use of alternative fuels compatible with the existing units. N-Butanol is an attractive candidate as conventional gasoline replacement, given its ease of production from bio-mass and key physico-chemical properties similar to their gasoline counterpart. A comparison in terms of combustion behavior of gasoline and n-Butanol is here presented by means of experiments and 3D-CFD simulations. The fuels are tested on a single-cylinder direct-injection spark-ignition (DISI) unit with an optically accessible flat piston. The analysis is carried out at stoichiometric undiluted condition and lean-diluted mixture for both pure fuels.
Journal Article

Non-Intrusive Investigation in a Small GDI Optical Engine Fuelled with Gasoline and Ethanol

2011-04-12
2011-01-0140
The aim of this paper is the experimental investigation of the effect of direct fuel injection on the combustion process and pollutant formation in a spark ignition (SI) two-wheel engine. The engine is a 250cc single cylinder, four-stroke spark-ignition firstly equipped with a four-valve PFI head and then with GDI one operating with European commercial gasoline and Bio-ethanol. It is equipped with a wide sapphire window in the bottom of the chamber and quartz cylinder. In the combustion chamber, optical techniques based on 2D-digital imaging were used to follow the injection and flame propagation and spectroscopic measurements were carried out in order to evaluate the main radical species. Radical species such as OH and CH were detected and used to follow the chemical phenomena related to the fuel quality. Measurements were carried out at different engine speeds and combustion strategies based on different injection pressures.
Journal Article

Characterization of CH4 and CH4/H2 Mixtures Combustion in a Small Displacement Optical Engine

2013-04-08
2013-01-0852
In the last years, even more attention was paid to the alternative fuels which can allow both reducing the fuel consumption and the pollutant emissions. Among gaseous fuels, methane is considered one of the most interesting in terms of engine application. It represents an immediate advantage over other hydrocarbon fuels leading to lower CO₂ emissions; if compared to gasoline, CH₄ has wider flammable limits and better anti-knock properties, but lower flame speed. The addition of H₂ to CH₄ can improve the already good qualities of methane and compensate its weak points. In this paper a comparison was carried out between CH₄ and different CH₄/H₂ mixtures. The measurements were carried out in an optically accessible small single-cylinder, Port Fuel Injection spark ignition (PFI SI), four-stroke engine. It was equipped with the cylinder head of a commercial 250 cc motorcycle engine representative of the most popular two-wheel vehicles in Europe.
Journal Article

Full-Cycle CFD Modeling of Air/Fuel Mixing Process in an Optically Accessible GDI Engine

2013-09-08
2013-24-0024
This paper is focused on the development and application of a CFD methodology that can be applied to predict the fuel-air mixing process in stratified charge, sparkignition engines. The Eulerian-Lagrangian approach was used to model the spray evolution together with a liquid film model that properly takes into account its effects on the fuel-air mixing process into account. However, numerical simulation of stratified combustion in SI engines is a very challenging task for CFD modeling, due to the complex interaction of different physical phenomena involving turbulent, reacting and multiphase flows evolving inside a moving geometry. Hence, for a proper assessment of the different sub-models involved a detailed set of experimental optical data is required. To this end, a large experimental database was built by the authors.
Journal Article

Capturing Cyclic Variability in SI Engine with Group Independent Component Analysis

2015-09-06
2015-24-2415
Data decomposition techniques have become a standard approach for the analysis of 2D imaging data originating from optically accessible internal combustion engines. In particular, the method of Proper Orthogonal Decomposition (POD) has proven to be a valuable tool for the evaluation of cycle-to-cycle variability based on luminous combustion imaging and particle image velocimetry (PIV) measurements. POD basically permits to characterize the dominant structures of the process under consideration. Recently, an alternative procedure based on Independent Component Analysis (ICA) has been introduced in the engine field. Unlike POD, the method of ICA identifies the patterns corresponding to physical processes that are statistically independent. In this work, a Group-ICA approach is applied to 2D cycle-resolved images of the luminosity emitted by the combustion process. The analysis is meant to characterize cyclic variability of a port fuel injection spark ignition (PFI SI) engine.
Journal Article

Characterization of Knock Tendency and Onset in a GDI Engine by Means of Conventional Measurements and a Non-Conventional Flame Dynamics Optical Analysis

2017-09-04
2017-24-0099
Gasoline direct injection (GDI) allows knock tendency reduction in spark-ignition engines mainly due to the cooling effect of the in-cylinder fuel evaporation. However, the charge formation and thus the injection timing and strategies deeply affect the flame propagation and consequently the knock occurrence probability and intensity. In particular, split injection allows a reduction of knock intensity by inducing different AFR gradient and turbulent energy distribution. Present work investigates the tendency to knock of a GDI engine at 1500 rpm full load under different injection strategies, single and double injections, obtained delivering the same amount of gasoline in two equal parts, the first during intake, the second during compression stroke. In these conditions, conventional and non-conventional measurements are performed on a 4-stroke, 4-cylinder, turbocharged GDI engine endowed of optical accesses to the combustion chamber.
Technical Paper

Sub-23 nm Particle Emissions from Gasoline Direct Injection Vehicles and Engines: Sampling and Measure

2020-04-14
2020-01-0396
Nowadays, the regulation regards only the particles larger than 23 nm. The attention is shifting towards the sub-23 nm particles because of their large presence at the exhaust of the modern engines and their negative impact on human health. The main challenge of the regulation of these particles is the definition of a proper procedure for their measure. The nature of the sub-23 nm particles is not well understood, and their measure is strongly affected by the sampling conditions leading to not reliable measure. The aim of this paper is to provide information on the emissions of sub-23 nm particles from GDI vehicles/engines. At the same time, the presence of volatiles, which mainly contribute to the formation of sub-23 nm particles, was evaluated and the effect of sampling conditions was investigated. The analysis was performed on a 1.8L GDI powered vehicle, widely used both in North America and Europe, and a 4-cylinder GDI engine, whose features are similar to those of the vehicle.
X