Refine Your Search

Topic

Author

Search Results

Journal Article

Design Optimization of Interior Permanent Magnet Synchronous Motors for HEV & EV

2010-04-12
2010-01-1252
This paper proposes a new motor design procedure for reducing motor loss in hybrid vehicles (HEV) and electric vehicles (EV). To find an optimum design in a short time, a non-linear magnetic circuit model was developed for interior permanent magnet synchronous motors (IPMSM). Speed-torque curves and motor losses were calculated based on this model. Combined with Energy Management Simulation, this model makes it possible to find an optimum motor design with minimum loss.
Journal Article

Development of Transverse Flux Motor with Improved Material and Manufacturing Method

2013-04-08
2013-01-1765
Honda has been proposing and developing a Transverse Flux Motor (T.F. motor) in order to shorten axial length of the motor for hybrid electric vehicles (HEVs). In contrast to conventional motors that are composed of a stator core (made from magnetic steel sheet) and winding wires, the T.F. motor is a new type of three-dimensional magnetic circuit motor composed of a soft magnetic composites (SMC) core and a coil. While reducing axial length and achieving a simple stator architecture comprised of just five parts, the new motor raises issues including the need to improve motor efficiency and the development of techniques for the manufacture of rectangular wave-shaped coils. To improve motor efficiency, we conducted a parameter study of the SMC core material and manufacturing conditions to establish the optimum required specifications for reducing iron loss.
Journal Article

Development of Li-ion Battery Control Technology for HEV

2015-04-14
2015-01-0251
The mounting of lithium-ion batteries (LIB) in hybrid electric vehicles (HEV) calls for the configuration of highly robust control systems. When mounting LIBs in the vehicle, it is important to accurately ascertain and precisely control the state of the battery. In order to achieve high durability, it is important to configure highly reliable systems capable of dependably preventing overcharging as well as to have control technology based on software that can contribute to extended battery life. The system configuration applies an overcharge prevention system that uses voltage detection with an emphasis on reliability. Furthermore, a method for varying the range of state of charge (SOC) control in the vehicle according to the battery state is implemented to assure durability. In order to achieve this, battery-state detection technology was developed for the purpose of correctly detecting and judging the battery state.
Journal Article

Development of Electric Powertrain for CLARITY PLUG-IN HYBRID

2018-04-03
2018-01-0415
Honda has developed the 2018 model CLARITY PLUG-IN HYBRID. Honda’s new plug-in hybrid is a midsize sedan and shares a body platform with the CLARITY FUEL CELL and the CLARITY ELECTRIC. The vehicle’s electric powertrain boosts driving performance as an electric vehicle (EV) over Honda’s previous plug-in hybrid. The CLARITY PLUG-IN HYBRID’s electric powertrain consists of a traction motor and generator built into the transmission, a Power Control Unit (PCU) positioned above the transmission, an Intelligent Power Unit (IPU) fitted under the floor, and an onboard charger fitted below the rear trunk. The PCU integrates an inverter that drives the traction motor, an inverter that drives the generator, and a DC-DC converter to boost battery voltage (referred to as a “Voltage Control Unit (VCU)” below).
Journal Article

Advanced Transient Simulation on Hybrid Vehicle Using Rankine Cycle System

2008-04-14
2008-01-0310
A hybrid simulation model in the transient bench was developed to realize the characteristics of the transient behavior and the fuel economy equivalent to that of a real vehicle. The motors and the batteries that were main components of the hybrid vehicle system were simulated as constructive modules, the functions of which have the integrated control and the input/output (I/O) function with real components. This model enabled us to accommodate a variety of auxiliary (AUX) I/O flexibly. The accuracy of the model was verified by the transient characteristics of the engine and the fuel economy result through correlation with a mass-produced vehicle. Furthermore, the flexibility of the model to a variety of AUX I/O was examined from the simulation test of the vehicle equipped with the waste heat recovery (WHR) system.
Journal Article

Development of Compact Transverse Flux Motor with a New Magnetic Circuit Configuration

2011-04-12
2011-01-0348
Size reduction is a significant requirement for hybrid vehicle motors. To meet this requirement, a small new-structure transverse flux (T.F.) motor has been developed, with efforts focused on coil end elimination and a higher motor torque density. The new structure is characterized by a stator core with a three-dimensional flux path configuration. A prototype motor was also designed and produced using ring coils and stator cores made of soft magnetic composites (SMC). The prototype performance was tested to verify the validity of the new magnetic circuit configuration.
Journal Article

Application of Electric Servo Brake System to Plug-In Hybrid Vehicle

2013-04-08
2013-01-0697
An electric servo brake system applied for use on electric vehicles was applied for use on plug-in hybrid vehicles in order to achieve fuel-savings together with good brake feel and enhanced operability for plug-in hybrid vehicles. The electric servo brake system is made up of highly accurate braking pressure control that functions cooperatively with regenerative brakes together with a structure in which pedal force is not influenced by braking pressure control. The configuration of these components enabled good braking feel even when the power train was being switched from one drive mode to another. Automated pressurization functions that are intended for plug-in hybrid vehicles and that operate with electric servo brake systems were also developed. These developed functions include stall cooperative control that functions cooperatively with the power train, regenerative coordinate adaptive cruise control, and hill-start assist.
Journal Article

Development of a New Two-Motor Plug-In Hybrid System

2013-04-08
2013-01-1476
A highly efficient two-motor plug-in hybrid system is developed to satisfy the global demands of CO2 reduction. This system switches three operation modes, what is called “EV Drive”, “Hybrid Drive” and “Engine Drive”, to maximize fuel efficiency according to the driving condition of the vehicle. Practical plug-in EV (Electric Vehicle) capability is also realized by adding a high-power on-board charger and a high capacity Li-ion battery to the original system. The outlines of the system components including a newly developed Atkinson cycle engine, a highly efficient electric coupled CVT (Continuously Variable Transmission) with built-in motor and generator, an integrated PCU (Power Control Unit) and an exclusive battery for plug-in HEV (Hybrid Electric Vehicle) are described in this paper. In addition to the switching of three driving modes and the efficiency improvement of each device, cooperative control of the hybrid system is introduced.
Technical Paper

Study on Emission Reducing Method with New Lean NOX Catalyst for Diesel Engines

2007-07-23
2007-01-1933
In recent years, emission regulations have become more stringent as a result of increased environmental awareness in each region of the world. For diesel engines, reducing NOX emissions is a difficult technical challenge.[1],[2],[3],[4]. To respond to these strict regulations, an exhaust gas aftertreatment system was developed, featuring a lean NOX catalyst (LNC) that uses a new chemical reaction mechanism to reduce NOX. The feature of the new LNC is the way it reduces NOX through an NH3-selective catalytic reduction (SCR), in which NOX adsorbed in the lean mixture condition is converted to NH3 in the rich mixture condition and reduced in the following lean mixture condition. Thus, the new system allows the effective reduction of NOX. However, in order to realize cleaner emission gases, precise engine control in response to the state of the exhaust aftertreatment system is essential.
Technical Paper

Study on Low NOX Emission Control Using Newly Developed Lean NOX Catalyst for Diesel Engines

2007-04-16
2007-01-0239
In recent years, emission regulations have become more stringent as a result of increased environmental awareness in each region of the world. For lean-burn diesel engines, since it is not possible to use three-way catalytic converters, reducing NOX emissions is a difficult technical challenge. To respond to these strict regulations, an exhaust gas aftertreatment system was developed, featuring a lean NOX catalyst (LNC) that uses a new chemical reaction mechanism to reduce NOX. The feature of the new LNC is the way it reduces NOX through an NH3-selective catalytic reduction (SCR), in which NOX adsorbed in the lean mixture condition is converted to NH3 in the rich mixture condition and reduced in the following lean mixture condition. Thus, the new system allows more efficient reduction of NOX than its conventional counterparts. However, an appropriate switching control between lean and rich mixture conditions along with compensation for catalyst deterioration was necessary.
Technical Paper

Development of Hydraulic Servo Brake System for Cooperative Control with Regenerative Brake

2007-04-16
2007-01-0868
A new brake system, able to make efficient use of regenerative braking while maintaining excellent brake feel, has been developed to increase the fuel economy of hybrid vehicles. A hydraulic servo was used as a base to enable mechanical operation of the service brakes; solenoid valves and brake fluid pressure sensors were added to this base to make it possible to control brake line pressure as demanded. The use of a stroke simulator in the hydraulic servo prevents brake feel from being affected by the control of the brake pressure. In addition, high-accuracy brake pressure control that functions cooperatively with the regenerative brakes is enabled, resulting in stable braking effectiveness.
Technical Paper

Performance of Motorcycle Engine Oil with Sulfur-Based Additive as Substitute Zn-DTP

2008-09-09
2008-32-0005
Just as CO2 reduction is required of four wheeled vehicles for environmental protection, similar environmental concerns drive the development of motorcycle oil technology. Zinc dialkyldithiophosphate (Zn-DTP) type additives are widely used for engine oil formulations. However, phosphorus compounds are environmental load materials. The reduction of the quantity of phosphorus compounds in engine oils is required to reduce poisoning of three-way catalysts used to purify exhaust gases from internal combustion engines. Mr. Ito and his co-authors1) reported that they developed a sulfur-based additive as a substitute for Zn-DTP. Their non-phosphorus engine oil formulation for four-wheeled vehicles with a sulfur-based additive was examined to evaluate its anti-wear performance using the following test methods:JASO M328 for gasoline engines (KA24E) and JASO M354 for Diesel engine (4D34T4).
Technical Paper

Development of a Small-Sized Multilayer Fuel Tank for Motorcycles and ATVs Complying with EPA Gasoline Permeation Controls

2008-09-09
2008-32-0041
As a result of recent EPA (U.S. Environmental Protection Agency) gasoline permeation control regulations, the fuel tanks on motorcycles and ATVs (All-Terrain Vehicles) are required to change to lower gasoline permeation performance on 2008 models. Therefore, we determined to use a multilayer plastic fuel tank. There are some molding issues that are peculiar to motorcycle and ATV fuel tanks. First, when the insert is blow molded, there is a reduction in welding strength. Second, peeling of the adhesion occurs on impact in the inserted parts. Third, saddle shapes with large ductility deformation are easy to be punctured during molding. Finally, the appearance of the fuel tank is not acceptable. In order to address the first issue, the welding performance, the drawdown of parison and the melting damage of insert parts were balanced, focusing attention to the temperatures of the parison and the insert.
Technical Paper

The Validity of EPS Control System Development using HILS

2010-04-12
2010-01-0008
In recent years, the increased use of electric power steering in vehicles has increased the importance of issues such as making systems more compact and lightweight, and dealing with increased development man-hours. To increase development efficiency, the use of a “Hardware in the loop simulator” (HILS) is being tested to shift from the previous development method that relied on a driver's subjective evaluation in an actual vehicle test to bench-test development. Using HILS enables tasks such as specification studies, performance forecasts, issue identification and countermeasure proposals to be performed at an early stage of development even when there is no prototype vehicle. This report describes a case study of using HILS to solve the issues of reducing the load by adjusting the geometric specifications around the kingpin and eliminating the tradeoff by adding a new EPS control algorithm in order to make the electric power steering (EPS) more compact and lightweight.
Technical Paper

Reduction of Life Cycle CO2 Emissions -The Example of Honda Insight

2001-11-12
2001-01-3722
In order to reduce CO2 emissions from automobiles, a highly fuel-efficient hybrid vehicle, the “Insight”, has been developed at Honda. Life cycle CO2 emissions are compared for the aluminum-bodied Insight, a simulated steel-bodied Insight, and a conventional gasoline vehicle. Life cycle CO2 emission is still dominated by the in-use fuel consumption. However, the contribution of CO2 emission from material use and processing could increase when the vehicle fuel consumption is greatly reduced. The use of recycled aluminum reduces CO2 emission from the aluminum-bodied Insight.
Technical Paper

Application of HIL Simulations for the Development of Vehicle Stability Assist System

2002-03-04
2002-01-0816
The Vehicle Stability Assist (VSA) system can generate sufficient forces to rapidly change the vehicle's motion. We can use this capability to effectively control the vehicle's behavior, but we must pay careful attention to ensure its reliability. The VSA system should be precisely tuned for each vehicle's characteristics in order to satisfactorily control performance without any unnecessary intervention or any excessive warnings. Usually extensive field tests are necessary to precisely tune the VSA system. This paper presents a practical method to tune the VSA system with Hardware-In-the-Loop (HIL) simulations in the final stage of its development. Due to the application of this procedure, both high control capabilities and reliability of the VSA system can be achieved.
Technical Paper

Development of a New 2.0L I4 Turbocharged Gasoline Direct Injection Engine

2016-04-05
2016-01-1017
It is important to take action regarding environmental issues on a global scale, and automakers are adding downsized turbocharged engines to their line-ups as a means of reducing CO2 emissions, particularly in Europe. Honda has recently announced a next-generation powertrain series that realizes a good balance between environmental performance and driving pleasure. As part of this series, the company has developed a downsized and turbocharged 2.0L gasoline direct injection engine. This is a high-powered sports car engine positioned in the European “hot hatch” category. The development balanced engine power with good environmental performance.
Technical Paper

Predictive Technique for Forced Vibration in Hybrid Transmission

2016-04-05
2016-01-1058
The subject is technology for damping forced vibration in the multiplate wet clutches used in hybrid vehicle transmissions. As a predictive technique for forced vibration caused by the structure of the clutch, three-dimensional simulation was used in the present study to anticipate the modes of vibration that occur. Next, a one-dimensional simulation was created as a predictive technique for drivetrain torsional vibration from the engine to the driveshaft. The one-dimensional simulation created was used to extract the modes of operation that are severe with regard to forced vibration from target values for vibration anticipated from the vehicle body. The results obtained were used with three-dimensional simulation to change the clutch structure to provide greater latitude with regard to the target for forced vibration.
Technical Paper

New-Structure Motor for Full Hybrid Electric Vehicle

2016-04-05
2016-01-1225
The traction and power generation motors of hybrid electric vehicles need to provide greater output densities. This can be achieved by increasing output and reducing the physical size and weight of the motors. However, there are limits on how much a motor’s output can be increased while simultaneously shrinking the motor’s size, as it is conventionally structured. To address this issue, the authors developed a stator with a new structure to increase motor output and reduce motor size. By simultaneously optimizing magnetic circuit design, they increased maximum torque by 2.6% and maximum output by 8.9% and reduced volume by 23% and weight by 23% compared to motors of conventional structure, all while maintaining the same level of efficiency. The result was top-of-class output and compactness.
X